|   | 
Details
   web
Records
Author Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J.
Title Reducing the ecological consequences of night-time light pollution: options and developments Type Journal Article
Year 2012 Publication (down) The Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 49 Issue 6 Pages 1256-1266
Keywords
Abstract 1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects.2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting.3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards 'whiter' light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths.4.Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
Address Environment and Sustainability Institute, University of Exeter Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes PMID:23335816; PMCID:PMC3546378 Approved no
Call Number IDA @ john @ Serial 15
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year 2013 Publication (down) The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Prugh, L.R.; Golden, C.D.
Title Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles Type Journal Article
Year 2013 Publication (down) The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 83 Issue 2 Pages 504-514
Keywords foraging efficiency; giving-up density; illumination; indirect effects; lunar cycles; moonlight; nocturnality; phylogenetic meta-analysis; predation risk; risk-sensitive foraging
Abstract The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.
Address Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1, Fairbanks, AK, 99775, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:24102189 Approved no
Call Number IDA @ john @ Serial 83
Permanent link to this record
 

 
Author Degen, T.; Mitesser, O.; Perkin, E.K.; Weiss, N.-S.; Oehlert, M.; Mattig, E.; Hölker, F.
Title Street lighting: sex-independent impacts on moth movement Type Journal Article
Year 2016 Publication (down) The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume Issue Pages
Keywords Biology
Abstract 1.Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. 2.In this study, we sought to determine if street lights could limit moth dispersal and if there was any sex bias in attraction to light. More specifically, we aimed to determine sex specific attraction radii for moths to street lights. 3.We tested these hypotheses by collecting moths for two years at an experimental setup. To estimate the attraction radii we developed a Markov model and related it to the acquired data. 4.Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0.44 times). With the Markov model, we estimated that a corner-light was 2.77 times more attractive than a wing-light with an equivalent attraction radius of c. 23m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. 5.These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures, and ii) that public lighting near important habitat structures but not interfering with local movement may affect moth movement between patches. This article is protected by copyright. All rights reserved.
Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:27146262 Approved no
Call Number LoNNe @ kyba @ Serial 1439
Permanent link to this record
 

 
Author Underwood, C.N.; Davies, T.W.; Queiros, A.M.
Title Artificial light at night alters trophic interactions of intertidal invertebrates Type Journal Article
Year 2017 Publication (down) The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 86 Issue 4 Pages 781-789
Keywords Animals
Abstract Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the balance of interspecific interactions involved in community structuring may be affected.
Address Plymouth Marine Laboratory, Plymouth, Devon, PL1 3DH, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:28452048 Approved no
Call Number LoNNe @ kyba @ Serial 1661
Permanent link to this record