|   | 
Details
   web
Records
Author Dutta, H.
Title Insights into the impacts of three current environmental problems on Amphibians Type Journal Article
Year 2018 Publication (up) European Journal of Ecology Abbreviated Journal
Volume 4 Issue 2 Pages 15-27
Keywords Animals; Review
Abstract Global warming, light pollution and noise are common human-induced environmental problems that are escalating at a high rate. Their consequences on wildlife have mostly been overlooked, with the exception of a few species with respect to climate change. The problems often occur simultaneously and exert their negative effects together at the same time. In other words, their impacts are combined. Studies have never focused on more than one problem, and so, such combined effects have never been understood properly. The review addresses this lacuna in the case of amphibians, which are a highly vulnerable group. It divides the overall impacts of the problems into seven categories (behaviour, health, movement, distribution, phenology, development and reproductive success) and then assesses their combined impact through statistical analyses. It revealed that amphibian calling is the most vulnerable aspect to the combined impacts. This could provide important input for conservation of amphibians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1339-8474 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2166
Permanent link to this record
 

 
Author Straka,T. M., Wolf, M., Gras, P., Buchholz, S., & Voigt, C. C.
Title Tree Cover Mediates the Effect of Artificial Light on Urban Bats Type Journal Article
Year 2019 Publication (up) Frontiers in Ecology and Evolution Abbreviated Journal
Volume 7 Issue Pages 91
Keywords Animals; ALAN; bats; canopy cover; chiroptera; light-emitting diodes; LED; trees; Ultraviolet; urban
Abstract With urban areas growing worldwide, so does artificial light at night (ALAN) which negatively affects many nocturnal animals, including bats. The response of bats to ALAN ranges from some opportunistic species taking advantage of insect aggregations around street lamps, particularly those emitting ultraviolet (UV) light, to others avoiding lit areas at all. Tree cover has been suggested to mitigate the negative effects of ALAN on bats by shielding areas against light scatter. Here, we investigated the effect of tree cover on the relationship between ALAN and bats in Berlin, Germany. In particular, we asked if this interaction varies with the UV light spectrum of street lamps and also across urban bat species. We expected trees next to street lamps to block ALAN, making the adjacent habitat more suitable for all species, irrespective of the wavelength spectrum of the light source. Additionally, we expected UV emitting lights next to trees to attract insects and thus, opportunistic bats. In summer 2017, we recorded bat activity at 22 green open spaces in Berlin using automated ultrasonic detectors. We analyzed bat activity patterns and landscape variables (number of street lamps with and without UV light emission, an estimate of light pollution, and tree cover density around each recording site within different spatial scales) using generalized linear mixed-effects models with a negative binomial distribution. We found a species-specific response of bats to street lamps with and without UV light, providing a more detailed picture of ALAN impacts than simply total light radiance. Moreover, we found that dense tree cover dampened the negative effect of street lamps without UV for open-space foraging bats of the genera Nyctalus, Eptesicus, and Vespertilio, yet it amplified the already existing negative or positive effect of street lamps with or without UV on Pipistrellus pipistrellus, P. pygmaeus, and Myotis spp. Our study underpins the importance of minimizing artificial light at night close to vegetation, particularly for bats adapted to spatial complexity in the environment (i.e., clutter-adapted species), and to increase dense vegetation in urban landscape to provide, besides roosting opportunities, protection against ALAN for open-space foraging bats in city landscapes.
Address Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2302
Permanent link to this record
 

 
Author Welbers, A.A.M.H.; van Dis, N.E.; Kolvoort, A.M.; Ouyang, J.; Visser, M.E.; Spoelstra, K.; Dominoni, D.M.
Title Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (Parus major) Type Journal Article
Year 2017 Publication (up) Frontiers in Ecology and Evolution Abbreviated Journal Front. Ecol. Evol.
Volume 5 Issue Pages
Keywords Animals
Abstract The ecological impact of artificial light at night (ALAN) is an increasingly recognized process that accompanies expanding urbanization. Yet, we have limited knowledge on the impact of ALAN on wild species, and on the potential to mitigate any negative effects by using different light sources and colors. In birds, effects of ALAN on activity levels are reported for several species and, hence, their daily energy expenditure (DEE) may be affected. DEE is a potent mediator of life-history trade-offs and fitness and thus an important aspect to consider when examining the potential long-term ecological effects of ALAN. Previous work has suggested that birds exposed to ALAN show higher levels of provisioning and nocturnal activity, suggesting that white ALAN increases DEE. Other factors regulating DEE, such as provisioning behavior and food availability, might also respond to ALAN and thus indirectly affect DEE. We tested the hypothesis that ALAN increases DEE using an experimental setup where four previously unlit transects were illuminated with either white, green, or red LED light, or left dark as a control treatment. This setup was replicated in eight locations across the Netherlands. We measured DEE of our focal species, the great tit (Parus major), using a novel doubly labeled water technique that uses breath rather than blood samples. Contrary to our expectations, birds feeding their offspring under white and green ALAN showed lower DEE compared to birds in the control dark treatment. Differences in chick provisioning activity did not explain this result, as neither visit rates nor daily activity timing was affected by light treatment. However, food availability under white and green light was much higher compared to red light and the dark control. This difference strongly suggests that the lower DEE under white and green ALAN sites is a consequence of higher food availability in these treatments. This result shows that there can be positive, indirect effects of ALAN for breeding song birds which may balance against the negative direct effects shown in previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-701X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2460
Permanent link to this record
 

 
Author Horváth, G.; Kriska, G.; Malik, P.; Robertson, B.
Title Polarized light pollution: a new kind of ecological photopollution Type Journal Article
Year 2009 Publication (up) Frontiers in Ecology and the Environment Abbreviated Journal Frontiers in Ecology and the Environment
Volume 7 Issue 6 Pages 317-325
Keywords light pollution; polarization; polarized light pollution
Abstract The alteration of natural cycles of light and dark by artificial light sources has deleterious impacts on animals and ecosystems. Many animals can also exploit a unique characteristic of light – its direction of polarization –as a source of information. We introduce the term “polarized light pollution” (PLP) to focus attention on the ecological consequences of light that has been polarized through interaction with human-made objects. Unnatural polarized light sources can trigger maladaptive behaviors in polarization-sensitive taxa and alter ecological interactions. PLP is an increasingly common byproduct of human technology, and mitigating its effects through selective use of building materials is a realistic solution. Our understanding of how most species use polarization vision is limited, but the capacity of PLP to drastically increase mortality and reproductive failure in animal populations suggests that PLP should become a focus for conservation biologists and resource managers alike.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 22
Permanent link to this record
 

 
Author Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J.
Title The nature, extent, and ecological implications of marine light pollution Type Journal Article
Year 2014 Publication (up) Frontiers in Ecology and the Environment Abbreviated Journal Frontiers in Ecology and the Environment
Volume 12 Issue 6 Pages 347-355
Keywords Ecology; light pollution; oceans; marine; ecology; ecosystem; Review
Abstract Despite centuries of use, artificial light at night has only recently been recognized as a cause for environmental concern. Its global extent and ongoing encroachment into naturally lit ecosystems has sparked scientific interest into the many ways in which it may negatively affect human health, societal attitudes, scientific endeavors, and biological processes. Yet, perhaps because sources of artificial light are largely land based, the potential for artificial light pollution to interfere with the biology of the ocean has not been explored in any detail. There is little information on how light pollution affects those species, behaviors, and interactions that are informed by the intensity, spectra, and periodicity of natural nighttime light in marine ecosystems. Here, we provide an overview of the extent of marine light pollution, discuss how it changes the physical environment, and explore its potential role in shaping marine ecosystems.
Address Environment and Sustainability Institute, University of Exeter, Cornwall, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 365
Permanent link to this record