toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Henn, M.; Nichols, H.; Zhang, Y.; Bonner, T.H. url  doi
openurl 
  Title (up) Effect of artificial light on the drift of aquatic insects in urban central Texas streams Type Journal Article
  Year 2014 Publication Journal of Freshwater Ecology Abbreviated Journal Journal of Freshwater Ecology  
  Volume 29 Issue 3 Pages 307-318  
  Keywords light pollution; stream ecology; urban ecology; drift; abiotic factors; Baetidae; Chironomidae; insects; Texas; Simuliidae; Edwards Plateau; light at night; ecology  
  Abstract Light pollution can reduce night time drift of larval aquatic insects in urban streams by disrupting their circadian rhythms. Previous studies on larval insect drift show that disruption in drift leads to changes in reproduction as well as intraspecific and interspecific interactions. The purpose of this study was to conduct a preliminary investigation into the effects of extreme artificial light on insect drift in urbanized, high clarity spring systems of the karst Edwards Plateau, TX. We quantified taxa richness, diversity, and abundance in aquatic insect night time drift under two treatments (ambient night time light and artificial light addition) and among five streams using a paired design. Richness and diversity of drifting aquatic insects were similar between treatments but abundance was 37% less in the light addition treatment than that of the control. Effects of light addition on mean abundance was more notable in large streams with a 58% decrease in Simuliidae (compared to that of the control) and 51% decrease in Baetidae. Reduced drift from light addition suggests the potential of artificial lighting disrupting insect drift and consequently community structure. Results of this experiment support a growing body of knowledge on how urbanized systems influence stream communities.  
  Address Department of Biology/Aquatic Station, Texas State University, San Marcos, TX, USA  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0270-5060 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 312  
Permanent link to this record
 

 
Author Cruz, L.M.; Shillinger, G.L.; Robinson, N.J.; Tomillo, P.S.; Paladino, F.V. url  doi
openurl 
  Title (up) Effect of light intensity and wavelength on the in-water orientation of olive ridley turtle hatchlings Type Journal Article
  Year 2018 Publication Journal of Experimental Marine Biology and Ecology Abbreviated Journal Journal of Experimental Marine Biology and Ecology  
  Volume 505 Issue Pages 52-56  
  Keywords Animals  
  Abstract Light pollution, associated with coastal development, poses a growing threat to sea turtles. Hatchlings are particularly affected during their crawl to the ocean since they exhibit phototaxis and may move towards or be disoriented by artificial lights. Although much is known about how hatchlings respond to artificial light while crawling to the ocean, far less is known about their response after reaching the water. Here, we investigate how hatchling olive ridley turtles (Lepidochelys olivacea) held in artificial pools responded to light of different wavelengths (red, 720 nm; yellow, 660 nm and green, 520 nm) and intensities (0.1–3.3 lx, mean 0.87 lx, SD = 0.85, 10.3–45.9 lx, mean 15.75 lx,SD = 7.12; 47.5–84.2 lx; mean 52.02 lx, SD = 9.11; 91.3–140.8 lx, mean 105 lx, SD = 13.24; 150.1–623 lx, mean 172.18 lx, SD = 73.42). When no light or red light below 39 lx was present, hatchlings oriented at a mean angle of 180° from true north and did not orient towards any discernable feature. However, hatchlings swam towards the light at intensities of red light above 39 lx, yellow light above 10 lx and green light above 5 lx. Our findings indicate that sea turtles will swim towards artificial lights even after reaching the water. Thus, we recommend light mitigation efforts should extend beyond nesting beaches and into the associated oceanic habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0981 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1894  
Permanent link to this record
 

 
Author Holt, C.S.; Waters, T.F. url  doi
openurl 
  Title (up) Effect of Light Intensity on the Drift of Stream Invertebrates Type Journal Article
  Year 1967 Publication Ecology Abbreviated Journal Ecology  
  Volume 48 Issue 2 Pages 225  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 426  
Permanent link to this record
 

 
Author Cammaerts, M. C., & Cammaerts, R. url  openurl
  Title (up) Effect of nocturnal lighting on an ant’s ethological and physiological traits Type Journal Article
  Year 2019 Publication MOJ Ecology & Environmental Sciences Abbreviated Journal  
  Volume 4 Issue 5 Pages 211-218  
  Keywords Animals  
  Abstract Artificial nocturnal lighting affects the nature, an impact best studied on vertebrates that are directly depending on the presence or absence of light. Here, we examined on an ant species taken as a model the effects of artificial nocturnal lighting on eleven physiological and ethological traits. Ant workers maintained under nocturnal lighting showed a decrease or a change in their level of activity, food consumption, locomotion, orientation ability, audacity, tactile perception, social relationship, learning and memory. This was largely observed during the night but the effects persisted, at a lower extend, during the day  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2735  
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A. url  doi
openurl 
  Title (up) Effects of artificial light on flowering of foredune vegetation Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume 100 Issue 5 Pages e02678  
  Keywords Plants; Coastal management; coastal dunes; Canary Islands; Spain; Europe  
  Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems.  
  Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825328 Approved no  
  Call Number GFZ @ kyba @ Serial 2244  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: