|   | 
Details
   web
Records
Author Aulsebrook, A.E.; Jones, T.M.; Rattenborg, N.C.; Roth, T.C. 2nd; Lesku, J.A.
Title Sleep Ecophysiology: Integrating Neuroscience and Ecology Type Journal Article
Year 2016 Publication Trends in Ecology & Evolution Abbreviated Journal Trends Ecol Evol
Volume (down) 31 Issue 8 Pages 590-599
Keywords Commentary; Physiology
Abstract Here, we propose an original approach to explain one of the great unresolved questions in animal biology: what is the function of sleep? Existing ecological and neurological approaches to this question have become roadblocks to an answer. Ecologists typically treat sleep as a simple behavior, instead of a heterogeneous neurophysiological state, while neuroscientists generally fail to appreciate the critical insights offered by the consideration of ecology and evolutionary history. Redressing these shortfalls requires cross-disciplinary integration. By bringing together aspects of behavioral ecology, evolution, and conservation with neurophysiology, we can achieve a more comprehensive understanding of sleep, including its implications for adaptive waking behavior and fitness.
Address La Trobe University, School of Life Sciences, Melbourne, VIC, Australia. Electronic address: j.lesku@latrobe.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:27262386 Approved no
Call Number LoNNe @ kyba @ Serial 1462
Permanent link to this record
 

 
Author Azam, C.; Le Viol, I.; Julien, J.-F.; Bas, Y.; Kerbiriou, C.
Title Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program Type Journal Article
Year 2016 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume (down) 31 Issue 10 Pages 2471-2483
Keywords Animals
Abstract Context

Light pollution is a global change affecting a major proportion of global land surface. Although the impacts of Artificial Light At Night (ALAN) have been documented locally for many taxa, the extent of effect of ALAN at a landscape scale on biodiversity is unknown.

Objectives

We characterized the landscape-scale impacts of ALAN on 4 insectivorous bat species Pipistrellus pipistrellus, Pipistrellus kuhlii, Eptesicus serotinus, Nyctalus leisleri, and compared the extent of their effects to other major land-use pressures.

Methods

We used a French national-scale monitoring program recording bat activity among 2-km car transect surveys, and extracted landscape characteristics around transects with satellite and land cover layers. For each species, we performed multi-model averaging at 4 landscape scales (from 200 to 1000 m buffers around transects) to compare the relative effects of the average radiance, the proportion of impervious surface and the proportion of intensive agriculture.

Results

For all species, ALAN had a stronger negative effect than impervious surface at the 4 landscape scales tested. This effect was weaker than the effect of intensive agriculture. The negative effect of ALAN was significant for P. pipistrellus, P. kuhlii and E. serotinus, but not for N. leisleri. The effect of impervious surface varied among species while intensive agriculture had a significant negative effect on the 4 species.

Conclusion

Our results highlight the need to consider the impacts of ALAN on biodiversity in land-use planning and suggest that using only impervious surface as a proxy for urbanization may lead to underestimated impacts on biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1697
Permanent link to this record
 

 
Author Swaddle, J.P.; Francis, C.D.; Barber, J.R.; Cooper, C.B.; Kyba, C.C.M.; Dominoni, D.M.; Shannon, G.; Aschehoug, E.; Goodwin, S.E.; Kawahara, A.Y.; Luther, D.; Spoelstra, K.; Voss, M.; Longcore, T.
Title A framework to assess evolutionary responses to anthropogenic light and sound Type Journal Article
Year 2015 Publication Trends in Ecology & Evolution Abbreviated Journal Trends in Ecology & Evolution
Volume (down) 30 Issue 9 Pages 550–560
Keywords animals, biology, ecology, evolution
Abstract Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in environmental sound levels and artificial night lighting. These stimuli reorganize communities by interfering with species-specific perception of time-cues, habitat features, and auditory and visual signals. Rapid evolutionary changes could occur in response to light and noise, given their magnitude, geographical extent, and degree to which they represent unprecedented environmental conditions. We present a framework for investigating anthropogenic light and noise as agents of selection, and as drivers of other evolutionary processes, to influence a range of behavioral and physiological traits such as phenological characters and sensory and signaling systems. In this context, opportunities abound for understanding contemporary and rapid evolution in response to human-caused environmental change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1202
Permanent link to this record
 

 
Author Henn, M.; Nichols, H.; Zhang, Y.; Bonner, T.H.
Title Effect of artificial light on the drift of aquatic insects in urban central Texas streams Type Journal Article
Year 2014 Publication Journal of Freshwater Ecology Abbreviated Journal Journal of Freshwater Ecology
Volume (down) 29 Issue 3 Pages 307-318
Keywords light pollution; stream ecology; urban ecology; drift; abiotic factors; Baetidae; Chironomidae; insects; Texas; Simuliidae; Edwards Plateau; light at night; ecology
Abstract Light pollution can reduce night time drift of larval aquatic insects in urban streams by disrupting their circadian rhythms. Previous studies on larval insect drift show that disruption in drift leads to changes in reproduction as well as intraspecific and interspecific interactions. The purpose of this study was to conduct a preliminary investigation into the effects of extreme artificial light on insect drift in urbanized, high clarity spring systems of the karst Edwards Plateau, TX. We quantified taxa richness, diversity, and abundance in aquatic insect night time drift under two treatments (ambient night time light and artificial light addition) and among five streams using a paired design. Richness and diversity of drifting aquatic insects were similar between treatments but abundance was 37% less in the light addition treatment than that of the control. Effects of light addition on mean abundance was more notable in large streams with a 58% decrease in Simuliidae (compared to that of the control) and 51% decrease in Baetidae. Reduced drift from light addition suggests the potential of artificial lighting disrupting insect drift and consequently community structure. Results of this experiment support a growing body of knowledge on how urbanized systems influence stream communities.
Address Department of Biology/Aquatic Station, Texas State University, San Marcos, TX, USA
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-5060 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 312
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hölker, F.
Title Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
Year 2013 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume (down) 28 Issue 9 Pages 1637-1640
Keywords skyglow; light pollution; biodiversity
Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 35
Permanent link to this record