|   | 
Details
   web
Records
Author Wilhelm, I.; Born, J.; Kudielka, B.M.; Schlotz, W.; Wust, S.
Title Is the cortisol awakening rise a response to awakening? Type Journal Article
Year 2007 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 32 Issue 4 Pages 358-366
Keywords Human Health; Adrenocorticotropic Hormone/blood; Adult; Arousal/*physiology; Circadian Rhythm; Humans; Hydrocortisone/blood/*metabolism; Hypothalamo-Hypophyseal System/physiology; Male; Pituitary-Adrenal System/physiology; Saliva/chemistry; Sleep/physiology
Abstract (up) A distinct rise in cortisol levels that occurs after morning awakening is increasingly used as an indicator of adrenocortical activity which is associated with different pathologies. Although it was previously assumed that the transition from sleep to wake is essential for the occurrence of the cortisol morning rise, this has never been tested. Here, we examined 16 healthy young men (20-33 yrs) between 2300 and 0800 h under sleep laboratory conditions. Serum cortisol and plasma adrenocorticotropin (ACTH) as well as salivary cortisol levels (after subjects were woken up at 0700 h) were repeatedly assessed. In a supplementary study condition, salivary cortisol levels in the first hour after awakening were measured at the subjects' home on two consecutive days. Comparison of pre- and post awakening measurements revealed significantly steeper increases in cortisol and ACTH after awakening. The rise in cortisol upon awakening under laboratory conditions did not significantly differ from that observed at home. We conclude that the cortisol increase after awakening is a response to morning awakening that is distinct from the circadian rise in hypothalamo-pituitary-adrenal (HPA) activity in the morning hours. Although the cortisol awakening response is modulated by circadian influences, it primarily reflects phasic psychophysiological processes specific to the sleep-wake transition.
Address Department of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4530 ISBN Medium
Area Expedition Conference
Notes PMID:17408865 Approved no
Call Number LoNNe @ kagoburian @ Serial 834
Permanent link to this record
 

 
Author Cope, K.L.; Schook, M.W.; Benard, M.F.
Title Exposure to artificial light at night during the larval stage has delayed effects on juvenile corticosterone concentration in American toads, Anaxyrus americanus Type Journal Article
Year 2020 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume in press Issue Pages 113508
Keywords Animals; amphibian; anthropogenic light; carry-over effects; environmental stressor; glucocorticoid; predation
Abstract (up) Artificial Light At Night (ALAN) is an environmental stressor that can disrupt individual physiology and ecological interactions. Hormones such as corticosterone are often responsible for mediating an organism's response to environmental stressors. We investigated whether ALAN was associated with a corticosterone response and whether it exacerbated the effects of another common stressor, predation. We tested for consumptive, non-consumptive, and physiological effects of ALAN and predator presence (dragonfly larvae) on a widespread amphibian, the American toad (Anaxyrus americanus). We found predators had consumptive (decreased survival) and non-consumptive (decreased growth) effects on larval toads. ALAN did not affect larval toads nor did it interact with the predator treatment to increase larval toad predation. Despite the consumptive and non-consumptive effects of predators, neither predators nor ALAN affected corticosterone concentration in the larval and metamorph life-stages. In contrast to studies in other organisms, we did not find any evidence that suggested ALAN alters predator-prey interactions between dragonfly larvae and toads. However, there was an inverse relationship between corticosterone and survival that was exacerbated by exposure to ALAN when predators were absent. Additionally, larval-stage exposure to ALAN increased corticosterone concentration in juvenile toads. Our results suggest the physiological effects of ALAN may not be demonstrated until later life-stages.
Address Department of Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, USA. Electronic address: mfb38@case.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:32442544 Approved no
Call Number GFZ @ kyba @ Serial 2931
Permanent link to this record
 

 
Author Anisimov, V. N.
Title Light pollution, reproductive function and cancer risk Type Journal Article
Year 2006 Publication Neuroendocrinology Letters Abbreviated Journal
Volume 27 Issue 1-2 Pages 35-52
Keywords Human Health
Abstract (up) At present, light pollution (exposure to light-at-night) both in the form of occupational exposure during night work and as a personal choice and life style, is experienced by numerous night-active members of our society. Disruption of the circadian rhythms induced by light pollution has been associated with cancer in humans. There are epidemiological evidences of increased breast and colon cancer risk in shift workers. An inhibition of the pineal gland function with exposure to the constant light (LL) regimen promoted carcinogenesis whereas the light deprivation inhibits the carcinogenesis. Treatment with pineal indole hormone melatonin inhibits carcinogenesis in pinealectomized rats or animals kept at the standard light/dark regimen (LD) or at the LL regimen. These observations might lead to use melatonin for cancer prevention in groups of humans at risk of light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 703
Permanent link to this record
 

 
Author Zhang, L.; Zhang, Z.; Wang, F.; Tian, X.; Ji, P.; Liu, G.
Title Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure Type Journal Article
Year 2017 Publication Reproductive Biology and Endocrinology : RB&E Abbreviated Journal Reprod Biol Endocrinol
Volume 15 Issue 1 Pages 78
Keywords Animals
Abstract (up) BACKGROUND: Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. METHODS: The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10-2, 10-3, 10-4, 10-5 M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. RESULTS: Melatonin treatment (10-4,10-5 M) significantly increased litter sizes compared to untreated controls (12.9 +/- 0.40 and 12.2 +/- 1.01 vs. 11.5 +/- 0.43; P < 0.05). The most effective concentration of melatonin (10-4 M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17beta-estradiol (E2) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. CONCLUSION: Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the microenvironment of the uterus and, thus, the outcomes of pregnancy.
Address State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. gshliu@cau.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-7827 ISBN Medium
Area Expedition Conference
Notes PMID:28969693 Approved no
Call Number LoNNe @ kyba @ Serial 1751
Permanent link to this record
 

 
Author Thorn, L.; Hucklebridge, F.; Esgate, A.; Evans, P.; Clow, A.
Title The effect of dawn simulation on the cortisol response to awakening in healthy participants Type Journal Article
Year 2004 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 29 Issue 7 Pages 925-930
Keywords Human Health; Adult; Affect/*physiology/radiation effects; Arousal/*physiology/radiation effects; Circadian Rhythm/*physiology; Female; Humans; Hydrocortisone/analysis/*physiology/radiation effects; *Light; Male; Middle Aged; Reference Values; Saliva/chemistry; Wakefulness/*physiology/radiation effects
Abstract (up) Bright light exposure after awakening has been shown to elevate cortisol levels in healthy participants. The present study examined the effect of dawn simulation (a treatment for seasonal affective disorder) on the cortisol response to awakening and mood. Twelve healthy participants were supplied with a dawn simulator (The Natural Alarm Clock, Outside In, Cambridge Ltd), a bedside light that increases in intensity prior to awakening to approximately 250 lux over 30 mins when an audible alarm sounds. A counterbalanced study was performed on 4 consecutive normal weekdays, two of which were control days (no dawn simulation) and two experimental (dawn simulation). Saliva samples were taken immediately on awakening then at 15, 30 and 45 minutes post awakening on all 4 study-days. Total cortisol production during the first 45 mins after awakening was found to be significantly higher in the experimental condition than in the control condition. Participants also reported greater arousal in the experimental condition and there was a trend for an association between increased arousal and increased cortisol secretory activity under dawn simulation. This study provides supportive evidence for the role of light and the suprachiasmatic nucleus in the awakening cortisol response.
Address Department of Psychology, University of Westminster, 309 Regent Street, London W1R 8AL, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4530 ISBN Medium
Area Expedition Conference
Notes PMID:15177708 Approved no
Call Number LoNNe @ kagoburian @ Serial 824
Permanent link to this record