|   | 
Details
   web
Records
Author (down) Zhang, L.; Zhang, Z.; Wang, F.; Tian, X.; Ji, P.; Liu, G.
Title Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure Type Journal Article
Year 2017 Publication Reproductive Biology and Endocrinology : RB&E Abbreviated Journal Reprod Biol Endocrinol
Volume 15 Issue 1 Pages 78
Keywords Animals
Abstract BACKGROUND: Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. METHODS: The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10-2, 10-3, 10-4, 10-5 M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. RESULTS: Melatonin treatment (10-4,10-5 M) significantly increased litter sizes compared to untreated controls (12.9 +/- 0.40 and 12.2 +/- 1.01 vs. 11.5 +/- 0.43; P < 0.05). The most effective concentration of melatonin (10-4 M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17beta-estradiol (E2) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. CONCLUSION: Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the microenvironment of the uterus and, thus, the outcomes of pregnancy.
Address State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. gshliu@cau.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-7827 ISBN Medium
Area Expedition Conference
Notes PMID:28969693 Approved no
Call Number LoNNe @ kyba @ Serial 1751
Permanent link to this record
 

 
Author (down) Wilhelm, I.; Born, J.; Kudielka, B.M.; Schlotz, W.; Wust, S.
Title Is the cortisol awakening rise a response to awakening? Type Journal Article
Year 2007 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 32 Issue 4 Pages 358-366
Keywords Human Health; Adrenocorticotropic Hormone/blood; Adult; Arousal/*physiology; Circadian Rhythm; Humans; Hydrocortisone/blood/*metabolism; Hypothalamo-Hypophyseal System/physiology; Male; Pituitary-Adrenal System/physiology; Saliva/chemistry; Sleep/physiology
Abstract A distinct rise in cortisol levels that occurs after morning awakening is increasingly used as an indicator of adrenocortical activity which is associated with different pathologies. Although it was previously assumed that the transition from sleep to wake is essential for the occurrence of the cortisol morning rise, this has never been tested. Here, we examined 16 healthy young men (20-33 yrs) between 2300 and 0800 h under sleep laboratory conditions. Serum cortisol and plasma adrenocorticotropin (ACTH) as well as salivary cortisol levels (after subjects were woken up at 0700 h) were repeatedly assessed. In a supplementary study condition, salivary cortisol levels in the first hour after awakening were measured at the subjects' home on two consecutive days. Comparison of pre- and post awakening measurements revealed significantly steeper increases in cortisol and ACTH after awakening. The rise in cortisol upon awakening under laboratory conditions did not significantly differ from that observed at home. We conclude that the cortisol increase after awakening is a response to morning awakening that is distinct from the circadian rise in hypothalamo-pituitary-adrenal (HPA) activity in the morning hours. Although the cortisol awakening response is modulated by circadian influences, it primarily reflects phasic psychophysiological processes specific to the sleep-wake transition.
Address Department of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4530 ISBN Medium
Area Expedition Conference
Notes PMID:17408865 Approved no
Call Number LoNNe @ kagoburian @ Serial 834
Permanent link to this record
 

 
Author (down) Weil, Z.M.; Borniger, J.C.; Cisse, Y.M.; Abi Salloum, B.A.; Nelson, R.J.
Title Neuroendocrine control of photoperiodic changes in immune function Type Journal Article
Year 2014 Publication Frontiers in Neuroendocrinology Abbreviated Journal Frontiers in Neuroendocrinology
Volume 37 Issue Pages 108-118
Keywords Animals; Photoperiod; Melatonin day length; Seasonality immune function; Neuroendocrine
Abstract Seasonal variation in immune function putatively maximizes survival and reproductive success. Day length (photoperiod) is the most potent signal for time of year. Animals typically organize breeding, growth, and behavior to adapt to spatial and temporal niches. Outside the tropics individuals monitor photoperiod to support adaptations favoring survival and reproductive success. Changes in day length allow anticipation of seasonal changes in temperature and food availability that are critical for reproductive success. Immune function is typically bolstered during winter, whereas reproduction and growth are favored during summer. We provide an overview of how photoperiod influences neuronal function and melatonin secretion, how melatonin acts directly and indirectly to govern seasonal changes in immune function, and the manner by which other neuroendocrine effectors such as glucocorticoids, prolactin, thyroid, and sex steroid hormones modulate seasonal variations in immune function. Potential future research avenues include commensal gut microbiota and light pollution influences on photoperiodic responses.
Address Department of Neuroscience, Ohio State University, Biomedical Research Tower #618, 460 West 12th Avenue, Columbus, OH, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-3022 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1062
Permanent link to this record
 

 
Author (down) Thorn, L.; Hucklebridge, F.; Esgate, A.; Evans, P.; Clow, A.
Title The effect of dawn simulation on the cortisol response to awakening in healthy participants Type Journal Article
Year 2004 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 29 Issue 7 Pages 925-930
Keywords Human Health; Adult; Affect/*physiology/radiation effects; Arousal/*physiology/radiation effects; Circadian Rhythm/*physiology; Female; Humans; Hydrocortisone/analysis/*physiology/radiation effects; *Light; Male; Middle Aged; Reference Values; Saliva/chemistry; Wakefulness/*physiology/radiation effects
Abstract Bright light exposure after awakening has been shown to elevate cortisol levels in healthy participants. The present study examined the effect of dawn simulation (a treatment for seasonal affective disorder) on the cortisol response to awakening and mood. Twelve healthy participants were supplied with a dawn simulator (The Natural Alarm Clock, Outside In, Cambridge Ltd), a bedside light that increases in intensity prior to awakening to approximately 250 lux over 30 mins when an audible alarm sounds. A counterbalanced study was performed on 4 consecutive normal weekdays, two of which were control days (no dawn simulation) and two experimental (dawn simulation). Saliva samples were taken immediately on awakening then at 15, 30 and 45 minutes post awakening on all 4 study-days. Total cortisol production during the first 45 mins after awakening was found to be significantly higher in the experimental condition than in the control condition. Participants also reported greater arousal in the experimental condition and there was a trend for an association between increased arousal and increased cortisol secretory activity under dawn simulation. This study provides supportive evidence for the role of light and the suprachiasmatic nucleus in the awakening cortisol response.
Address Department of Psychology, University of Westminster, 309 Regent Street, London W1R 8AL, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4530 ISBN Medium
Area Expedition Conference
Notes PMID:15177708 Approved no
Call Number LoNNe @ kagoburian @ Serial 824
Permanent link to this record
 

 
Author (down) Stock, D.; Schernhammer, E.
Title Does night work affect age at which menopause occurs? Type Journal Article
Year 2019 Publication Current Opinion in Endocrinology, Diabetes, and Obesity Abbreviated Journal Curr Opin Endocrinol Diabetes Obes
Volume in press Issue Pages
Keywords Human Health; Review
Abstract PURPOSE OF REVIEW: To delineate the current state of evidence on the impact of night shift work on age at natural menopause. RECENT FINDINGS: The only direct evidence is from a single observational study, which indicates that women who work night shifts are at moderately higher risk for earlier menopause and that this risk is more pronounced among younger women. Underlying biological mechanisms have yet to be sufficiently substantiated. A long-held line of inquiry, most strongly propagated by the observed link between night shift work and female breast cancer, is the 'Light at Night' hypothesis, which suggests melatonin-mediated circadian disruption as a potential regulator of reproductive signaling in women. Supporting evidence is found from observations of changes in endogenous melatonin production among night working women or in response to light exposure, and corresponding changes in endogenous ovarian hormone levels and modulated menstrual patterns, among other indications of altered central ovulation-governing processes. Susceptibility to night shift work may be modified by chronotype. SUMMARY: This review summarizes the literature related to night work and ovulatory regulation in humans, prioritizing population-based evidence to provide motivation for the study of circadian disruption and night shift work as a regulator of menopausal timing.
Address Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1752-296X ISBN Medium
Area Expedition Conference
Notes PMID:31644468 Approved no
Call Number GFZ @ kyba @ Serial 2708
Permanent link to this record