toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kernbach, M.E.; Hall, R.J.; Burkett-Cadena, N.; Unnasch, T.R.; Martin, L.B. url  doi
openurl 
  Title Dim light at night: physiological effects and ecological consequences for infectious disease Type Journal Article
  Year 2018 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol  
  Volume 58 Issue 5 Pages 995-1007  
  Keywords Animals  
  Abstract Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night (dLAN), a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.  
  Address Department of Global Health, University of South Florida, Tampa FL  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29939262 Approved no  
  Call Number GFZ @ kyba @ Serial 1946  
Permanent link to this record
 

 
Author (up) Kunz, T.H.; Gauthreaux, S.A.J.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; Dudley, R.; Westbrook, J.K.; Wikelski, M. url  doi
openurl 
  Title Aeroecology: probing and modeling the aerosphere Type Journal Article
  Year 2008 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol  
  Volume 48 Issue 1 Pages 1-11  
  Keywords aeroecology; light; biology  
  Abstract Aeroecology is a discipline that embraces and integrates the domains of atmospheric science, ecology, earth science, geography, computer science, computational biology, and engineering. The unifying concept that underlies this emerging discipline is its focus on the planetary boundary layer, or aerosphere, and the myriad of organisms that, in large part, depend upon this environment for their existence. The aerosphere influences both daily and seasonal movements of organisms, and its effects have both short- and long-term consequences for species that use this environment. The biotic interactions and physical conditions in the aerosphere represent important selection pressures that influence traits such as size and shape of organisms, which in turn facilitate both passive and active displacements. The aerosphere also influences the evolution of behavioral, sensory, metabolic, and respiratory functions of organisms in a myriad of ways. In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g., winds, air density, precipitation, air temperature), sunlight, polarized light, moon light, and geomagnetic and gravitational forces. The aerosphere has direct and indirect effects on organisms, which often are more strongly influenced than those that spend significant amounts of time on land or in water. Future advances in aeroecology will be made when research conducted by biologists is more fully integrated across temporal and spatial scales in concert with advances made by atmospheric scientists and mathematical modelers. Ultimately, understanding how organisms such as arthropods, birds, and bats aloft are influenced by a dynamic aerosphere will be of importance for assessing, and maintaining ecosystem health, human health, and biodiversity.  
  Address *Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK; Department of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany; Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA; Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; **USDA-ARS, 1500 N. Central Avenue, Sidney, MT 59270, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; USDA-ARS, 2771 F&B Road, College Station, TX 77845, USA and Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ 08544, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21669768 Approved no  
  Call Number IDA @ john @ Serial 19  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: