toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M. url  doi
openurl 
  Title Ground albedo impacts on higher-order scattering spectral radiances of night sky Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 239 Issue Pages (down) 106670  
  Keywords skyglow  
  Abstract The contribution from ground reflected light to the night sky radiance is of increased interest because of constant modernization of street lighting systems that now efficiently eliminate light emissions above the horizontal plane, so the appreciable fraction of artificial light directed upwards is from ground reflection. Diffuse light of a night sky shows a positive correlation with ground albedo (α), but it seems there is no linear trend between α and the night sky brightness (NSB), at least not for all sky elements, and, the mechanism of this relationship becomes even more complicated due to multiple scattering effects. The extent to which the ground reflectance influences the higher-order scattering radiance of night sky, and, the factors that initiate the crossover from single- to multiple-scattering dominance of the sky glow has been virtually unexplored until now.

We demonstrate here that albedo-induced effects in NSB exhibit an angular dependence, with amplitudes enhanced towards shorter wavelengths. For low values of ground reflectance and at short distances from a light source, the second-scattering radiance is found to be only a few percent of the first-order scattering radiance. However, the ratio of a higher- to the first-order scattering radiance gradually increases near horizon, specifically at the side opposite to the azimuthal position of the light source. Also the NSB in blue band has decreasing gradation tendency when increasing the altitude above sea level. The findings in this paper are significant in a proper incorporation of higher-order scattering in modeling the NSB under elevated reflectance conditions, and may be critical for saving computational time.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2679  
Permanent link to this record
 

 
Author Bará, S.; Ribas, S.; Kocifaj, M. url  doi
openurl 
  Title Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source Type Journal Article
  Year 2015 Publication Journal of Optics Abbreviated Journal J. of Optics  
  Volume 17 Issue Pages (down) 105607  
  Keywords Skyglow; light propagation, atmospheric optics, light pollution  
  Abstract The artificial emissions of light contribute to a high extent to the observed brightness of the night sky in many places of the world. Determining the all-sky radiance of anthropogenic origin requires solving the radiative transfer equation for ground-level light sources, generally resorting to a double-scattering approximation in order to account for the observed radiance patterns with a reasonable degree of accuracy. Since the all-sky radiance distribution produced by an elementary light source depends on the distance to the observer in a way that is not immediately obvious, the contributions of sources located at different distances have to be computed on an individual basis, solving for each one the corresponding scattering integrals. In this paper we show that these calculations may be significantly alleviated by using a modal approach, whereby the hemispheric night-sky radiance is expanded in terms of a convenient basis of two-dimensional (2D) orthogonal functions. Since the modal coefficients of this expansion do vary smoothly with the distance to the observer, the all-sky brightness distributions produced by light sources located at arbitrary intermediate distances can be efficiently estimated by interpolation, provided that the coefficients at a discrete set of distances are accurately determined beforehand.  
  Address Area de Optica, Universidade de Santiago de Compostela Campus Sur, E-15782, Santiago de Compostela, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher IOP Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-8986 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1235  
Permanent link to this record
 

 
Author Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. url  doi
openurl 
  Title Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data Type Journal Article
  Year 2020 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 85 Issue Pages (down) 101989  
  Keywords Remote Sensing  
  Abstract Nighttime light (NTL) remote sensing data have been widely used to derive socioeconomic indices at national and regional scales. However, few studies analyzed the factors that may explain NTL variations at a fine scale due to the limited resolution of existing NTL data. As a new generation NTL satellite, Luojia 1-01 provides NTL data with a finer spatial resolution of ∼130 m and can be used to assess the relationship between NTL intensity and artificial surface features on an unprecedented scale. This study represents the first efforts to assess the relationship between Luojia 1-01 NTL intensity and artificial surface features at the parcel level in comparison to the Suomi National Polar-orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data. Points-of-interest (POIs) and land-use/land-cover (LULC) data were used in random forest (RF) regression models for both Luojia 1-01 and NPP-VIIRS to analyze the feature contribution of artificial surface features to NTL intensity. The results show that luminosity variations in Luojia 1-01 data for different land-use types were more significant than those in NPP-VIIRS data because of the finer spatial resolution and wider measurement range. Seventeen variables extracted from POI and LULC data explained the Luojia 1-01 and NPP-VIIRS NTL intensity, with a good out-of-bag score of 0.62 and 0.76, respectively. Moreover, Luojia 1-01 data had fewer “blooming” phenomena than NPP-VIIRS data, especially for cropland, water body, and rural area. Luojia 1-01 is more suitable for estimating socioeconomic activities and can attain more comprehensive information on human activities, since the feature contribution of POI variables is more sensitive to NTL intensity in the Luojia 1-01 RF regression model than that in the NPP-VIIRS RF regression model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2745  
Permanent link to this record
 

 
Author Chen, X.; Jia, X.; Pickering, M. url  doi
openurl 
  Title A Nighttime Lights Adjusted Impervious Surface Index (NAISI) with Integration of Landsat Imagery and Nighttime Lights Data from International Space Station Type Journal Article
  Year 2019 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 83 Issue Pages (down) 101889  
  Keywords Remote Sensing  
  Abstract Accurate mapping of impervious surface is essential for both urbanization monitoring and micro-ecosystem research. However, the confusion between impervious surface and bare soil is the major concern due to their high spectral similarity in optical imagery. Integration of multi-sensor images is considered to offer a better capacity for distinguishing impervious surface from background. In this paper, a new impervious surface index namely nighttime light adjusted impervious surface index (NAISI), which integrates information from Landsat and nighttime lights (NTL) data from International Space Station (NTL-ISS), is proposed. Parallel to baseline subtraction approaches, NAISI integrate the information from the first component of principal component (PC) transformation of NTL-ISS, the Soil Adjusted Vegetation Index (SAVI) and the third component of tasseled cap transform (TC3) of the Landsat data. Visual interpretation and quantitative indices (SDI, Kappa and overall accuracy) were adopted to elevate the accuracy and separability of NAISI. Comparative analysis with NTL derived light intensity, optical indices, as well as existing optical-NTL indices were conducted to examine the performance of NAISI. Results indicate that NAISI achieves a more promising capability in impervious surface mapping. This demonstrates the superiority of integration of optical and nighttime lights information for imperviousness detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2658  
Permanent link to this record
 

 
Author Bierman, A.; Figueiro, M.G.; Rea, M.S. url  doi
openurl 
  Title Measuring and predicting eyelid spectral transmittance Type Journal Article
  Year 2011 Publication Journal of Biomedical Optics Abbreviated Journal J Biomed Opt  
  Volume 16 Issue 6 Pages (down) 067011  
  Keywords Instrumentation; Human Health  
  Abstract The purpose of the present study was to objectively quantify the spectral transmittance of the eyelid. Reported here are data acquired using a technique that was developed to provide practical and accurate measurements of eyelid transmittance across the visible portion of the electromagnetic spectrum. The empirical data were analyzed in terms of the absorption and scattering characteristics of the constituents of skin to develop a method for predicting eyelid transmission. Results showed that the eyelid has a much higher optical density at short wavelengths than previously published. The mean +/- standard deviation (s.d.) optical density of the eyelid from 450 to 650 nm was 2.1 +/- 0.3 with an optical density range among subjects of approximately 1.0. The study results indicate that skin pigmentation is poorly correlated with eyelid transmission; eyelid transmission is most affected by wavelength-independent macromolecules in the eyelid as well as its overall thickness.  
  Address Rensselaer Polytechnic Institute, Lighting Research Center, 21 Union Street, Troy, New York 12180, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-3668 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21721832 Approved no  
  Call Number LoNNe @ kyba @ Serial 1530  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: