toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Admiranto, A.G.; Priyatikanto, R.; Maryam, S.; Ellyyani,; Suryana, N. url  doi
openurl 
  Title Preliminary Report of Light Pollution in Indonesia Based on Sky Quality Observation Type Journal Article
  Year 2019 Publication Journal of Physics: Conference Series Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume (down) 1231 Issue Pages 012017  
  Keywords Skyglow  
  Abstract We observed night sky quality in several LAPAN stations (Agam, Bandung, Pontianak, Sumedang, Garut, Pasuruan, and Biak) which were conducted from April until July 2018 using Unihedron Sky Quality Meter LU-DL type. Observational data from all of the observational points were then sent regularly to a centralized database for further use. Although most of the measurements were done in overcast conditions, we were able to determine the representative clear sky brightness statistically. The results showed that the light pollution level of the most of the stations are moderate (the values at Biak, Agam, Sumedang, and Pontianak are 20.0, 19.5, 19.6, and 17.7 mpsas respectively) and the stations which are located near or in cities are high (Bandung and Pasuruan with 17.1 and 18.0 mpsas, respectively). In a particular station (Garut) the light pollution is low (20.6 mpsas), so it is good to make this spot to be a location of astrotourism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2570  
Permanent link to this record
 

 
Author J.L. Tonry; C.W. Stubbs; K.R. Lykke; P. Doherty; I.S. Shivvers; W.S. Burgett; K.C. Chambers; K.W. Hodapp; N. Kaiser; R.-P. Kudritzki; E.A. Magnier; J.S. Morgan; P.A. Price; R.J. Wainscoat url  openurl
  Title The Pan-STARRS1 photometric system Type Journal Article
  Year 2012 Publication The Astrophysical Journal Abbreviated Journal  
  Volume (down) 750 Issue 2 Pages 99  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 978  
Permanent link to this record
 

 
Author Schawinski, K.; Urry, C. M.; S., Coppi, P.; Bamford, S. P.; Treister, E.; et al. url  openurl
  Title Galaxy zoo: the fundamentally different co-evolution of supermassive black holes and their early-and late-type host galaxies Type Journal Article
  Year 2010 Publication The Astrophysical Journal Abbreviated Journal  
  Volume (down) 711 Issue 1 Pages 284  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 970  
Permanent link to this record
 

 
Author Rahman, S.A.; St Hilaire, M.A.; Gronfier, C.; Chang, A.-M.; Santhi, N.; Czeisler, C.A.; Klerman, E.B.; Lockley, S.W. url  doi
openurl 
  Title Functional decoupling of melatonin suppression and circadian phase resetting in humans Type Journal Article
  Year 2018 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume (down) 596 Issue 11 Pages 2147-2157  
  Keywords Human Health  
  Abstract KEY POINTS: There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light ( approximately 9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. ABSTRACT: Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness ( approximately 9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other.  
  Address Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29707782 Approved no  
  Call Number GFZ @ kyba @ Serial 1887  
Permanent link to this record
 

 
Author Ruger, M.; St Hilaire, M.A.; Brainard, G.C.; Khalsa, S.-B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. url  doi
openurl 
  Title Human phase response curve to a single 6.5 h pulse of short-wavelength light Type Journal Article
  Year 2013 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume (down) 591 Issue Pt 1 Pages 353-363  
  Keywords Adolescent; Adult; Body Temperature; Circadian Rhythm/*physiology; Female; Humans; *Light; Male; Melatonin/physiology; Young Adult; blue light; melatonin; photic response; whort-wavelength  
  Abstract The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 muW cm(-2), 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of -2.6 h and 1.3 h, respectively. The 480 nm PRC induced approximately 75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.  
  Address Circadian Physiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. mrueger@rics.bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23090946; PMCID:PMC3630790 Approved no  
  Call Number IDA @ john @ Serial 239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: