toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Anbalagan, M.; Dauchy, R.; Xiang, S.; Robling, A.; Blask, D.; Rowan, B.; Hill, S. url  doi
openurl 
  Title SAT-337 Disruption Of The Circadian Melatonin Signal By Dim Light At Night Promotes Bone-lytic Breast Cancer Metastases Type Journal Article
  Year 2019 Publication Journal of the Endocrine Society Abbreviated Journal  
  Volume 3 Issue Supplement_1 Pages (down)  
  Keywords Animals  
  Abstract Breast cancer metastasis to bone is a major source of morbidity and mortality in women with advanced metastatic breast cancer. Morbidity from metastasis to bone is compounded by the fact that they cannot be surgically removed and can only be treated with chemotherapy and/or radiation therapy. Thus, there is critical need to develop new treatment strategies that kill bone metastatic tumors and reduce osteolytic lesions to improve patient quality of life and extend patient survival. Circadian rhythms are daily cycles of ~24 h that control many if not most physiologic processes and their disruption by exposure to light at night (LAN) or jet lag has been shown to be strongly associated with the development of cancer, particularly breast cancer. We have found that disruption of the anti-cancer circadian hormone melatonin (MLT) by light at night can significantly enhance the metastatic potential in breast cancer cells. Our work supports the report of the International Agency for Research on Cancer that shift work is a “probable human carcinogen” and highlights the association between exposure to light at night and invasive breast cancer. We recently reported that human breast tumor xenografts grown in athymic nude female rats housed in a photoperiod of 12h light at day: 12h dim light at night (dLAN, 0.2 lux – blocks the nighttime circadian MLT signal), display resistance to doxorubicin (Dox). More importantly, tumor growth and drug resistance could be blocked by the administration of Dox in circadian alignment with nocturnal MLT during dLAN. Our recent preliminary studies show that poorly invasive ERα positive MCF-7 breast cancer cells, when injected into the tibia (to mimic bone metastatic disease) of Foxn1nu athymic nude mice (which produce a strong circadian nighttime melatonin signal) housed in a dLAN photoperiod (suppressed nocturnal MLT production) developed full blown breast cancer tumors in bone (P<0.05) that are highly osteolytic (P<0.05). Moreover, patients with metastatic breast cancer are routinely treated with doxorubicin, which itself can promote bone damage. Our studies demonstrate that MLT slows the growth of metastatic breast cancer in bone but that the chrono-therapeutic use of doxorubicin in circadian alignment with melatonin in Foxn1nu mice with tibial breast tumors, reduced tumor growth in bone, reduced bone erosion, and promoted the formation of new bone. Successful use of this chronotherapeutic use of Dox and MLT in clinical trials increasing efficacy in preventing or suppressing breast cancer metastasis to bone while decreasing toxic side effects of doxorubicin would provide a revolutionary advancement in the treatment of bone metastatic breast cancer and decrease the morbidity and mortality associated with breast cancer metastasis to bone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2472-1972 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2433  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: