|   | 
Details
   web
Records
Author (up) Filipski, E.; Subramanian, P.; Carriere, J.; Guettier, C.; Barbason, H.; Levi, F.
Title Circadian disruption accelerates liver carcinogenesis in mice Type Journal Article
Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res
Volume 680 Issue 1-2 Pages 95-105
Keywords Human Health; Animals; Alanine Transaminase/blood; Animals; Aspartate Aminotransferases/blood; Bile Duct Neoplasms/chemically induced/pathology; Bile Ducts, Intrahepatic/drug effects/pathology; Body Weight/drug effects; Carcinogens/administration & dosage/*toxicity; Carcinoma, Hepatocellular/chemically induced/pathology; Cholangiocarcinoma/chemically induced/pathology; Circadian Rhythm/*drug effects; Diethylnitrosamine/administration & dosage/*toxicity; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Liver/drug effects/pathology; Liver Neoplasms/blood/*chemically induced/pathology; Male; Mice; Neoplasms, Multiple Primary/chemically induced/pathology; Sarcoma/chemically induced/pathology; Time Factors
Abstract BACKGROUND: The circadian timing system rhythmically controls behavior, physiology, cellular proliferation and xenobiotic metabolism over the 24-h period. The suprachiasmatic nuclei in the hypothalamus coordinate the molecular clocks in most mammalian cells through an array of circadian physiological rhythms including rest-activity, body temperature, feeding patterns and hormonal secretions. As a result, shift work that involves circadian disruption is probably carcinogenic in humans. In experimental models, chronic jet-lag (CJL) suppresses rest-activity and body temperature rhythms and accelerates growth of two transplantable tumors in mice. CJL also suppresses or significantly alters the expression rhythms of clock genes in liver and tumors. Circadian clock disruption from CJL downregulates p53 and upregulates c-Myc, thus favoring cellular proliferation. Here, we investigate the role of CJL as a tumor promoter in mice exposed to the hepatic carcinogen, diethylnitrosamine (DEN). METHODS: In experiment 1 (Exp 1), the dose-dependent carcinogenicity of chronic intraperitoneal (i.p.) administration of DEN was explored in mice. In Exp 2, mice received DEN at 10 mg/kg/day (cumulative dose: 243 mg/kg), then were randomized to remain in a photoperiodic regimen where 12 h of light alternates with 12 h of darkness (LD 12:12) or to be submitted to CJL (8-h advance of light onset every 2 days). Rest-activity and body temperature were monitored. Serum liver enzymes were determined repeatedly. Mice were sacrificed and examined for neoplastic lesions at 10 months. RESULTS: In Exp 1, DEN produced liver cancers in all the mice receiving 10 mg/kg/day. In Exp 2, mice on CJL had increased mean plasma levels of aspartate aminotransferase and more liver tumors as compared to LD mice at approximately 10 months (p = 0.005 and 0.028, respectively). The mean diameter of the largest liver tumor was twice as large in CJL vs LD mice (8.5 vs 4.4 mm, p = 0.027). In LD, a single histologic tumor type per liver was observed. In CJL, up to four different types were associated in the same liver (hepatocellular- or cholangio-carcinomas, sarcomas or mixed tumors). DEN itself markedly disrupted the circadian rhythms in rest-activity and body temperature in all the mice. DEN-induced disruption was prolonged for >or= 3 months by CJL exposure. CONCLUSIONS: The association of circadian disruption with chronic DEN exposure suggests that circadian clocks actively control the mechanisms of liver carcinogenesis in mice. Persistent circadian coordination may further be critical for slowing down and/or reverting cancer development after carcinogen exposure.
Address INSERM, U776 Rythmes Biologiques et Cancers, Hopital Paul Brousse, Villejuif F-94807, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-5107 ISBN Medium
Area Expedition Conference
Notes PMID:19833225 Approved no
Call Number LoNNe @ kagoburian @ Serial 747
Permanent link to this record
 

 
Author (up) Oesch-Bartlomowicz, B.; Weiss, C.; Dietrich, C.; Oesch, F.
Title Circadian rhythms and chemical carcinogenesis: Potential link. An overview Type Journal Article
Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res
Volume 680 Issue 1-2 Pages 83-86
Keywords Human Health; Animals; Carcinogens/*toxicity; Cell Cycle/physiology; Cell Cycle Proteins/physiology; Circadian Rhythm/*drug effects/physiology; DNA/drug effects; DNA Damage; DNA Repair; Homeostasis/physiology; Humans; Neoplasms/*etiology/physiopathology; Period Circadian Proteins/metabolism
Abstract Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.
Address ECNIS Unit, University of Mainz, D-55131 Mainz, Germany. oeschb@uni-mainz.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-5107 ISBN Medium
Area Expedition Conference
Notes PMID:19836463 Approved no
Call Number LoNNe @ kagoburian @ Serial 790
Permanent link to this record
 

 
Author (up) Stevens, R.G.
Title Working against our endogenous circadian clock: Breast cancer and electric lighting in the modern world Type Journal Article
Year 2009 Publication Mutation Research/Genetic Toxicology and Environmental Mutagenesis Abbreviated Journal Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Volume 680 Issue 1-2 Pages 106-108
Keywords Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1383-5718 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 819
Permanent link to this record