|   | 
Details
   web
Records
Author Wams, E.J.; Woelders, T.; Marring, I.; van Rosmalen, L.; Beersma, D.G.M.; Gordijn, M.C.M.; Hut, R.A.
Title Linking Light Exposure and Subsequent Sleep: A Field Polysomnography Study in Humans Type Journal Article
Year 2017 Publication Sleep Abbreviated Journal (down) Sleep
Volume 40 Issue 12 Pages
Keywords actigraphy; chronobiology; circadian rhythms; scoring; sleep/wake mechanisms
Abstract Study objectives: To determine the effect of light exposure on subsequent sleep characteristics under ambulatory field conditions. Methods: Twenty healthy participants were fitted with ambulatory polysomnography (PSG) and wrist-actigraphs to assess light exposure, rest-activity, sleep quality, timing, and architecture. Laboratory salivary dim-light melatonin onset was analyzed to determine endogenous circadian phase. Results: Later circadian clock phase was associated with lower intensity (R2 = 0.34, chi2(1) = 7.19, p < .01), later light exposure (quadratic, controlling for daylength, R2 = 0.47, chi2(3) = 32.38, p < .0001), and to later sleep timing (R2 = 0.71, chi2(1) = 20.39, p < .0001). Those with later first exposure to more than 10 lux of light had more awakenings during subsequent sleep (controlled for daylength, R2 = 0.36, chi2(2) = 8.66, p < .05). Those with later light exposure subsequently had a shorter latency to first rapid eye movement (REM) sleep episode (R2 = 0.21, chi2(1) = 5.77, p < .05). Those with less light exposure subsequently had a higher percentage of REM sleep (R2 = 0.43, chi2(2) = 13.90, p < .001) in a clock phase modulated manner. Slow-wave sleep accumulation was observed to be larger after preceding exposure to high maximal intensity and early first light exposure (p < .05). Conclusions: The quality and architecture of sleep is associated with preceding light exposure. We propose that light exposure timing and intensity do not only modulate circadian-driven aspects of sleep but also homeostatic sleep pressure. These novel ambulatory PSG findings are the first to highlight the direct relationship between light and subsequent sleep, combining knowledge of homeostatic and circadian regulation of sleep by light. Upon confirmation by interventional studies, this hypothesis could change current understanding of sleep regulation and its relationship to prior light exposure. Clinical trial details: This study was not a clinical trial. The study was ethically approved and nationally registered (NL48468.042.14).
Address Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:29040758; PMCID:PMC5806586 Approved no
Call Number GFZ @ kyba @ Serial 1885
Permanent link to this record
 

 
Author Ohayon, M.M.; Milesi, C.
Title Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population Type Journal Article
Year 2016 Publication Sleep Abbreviated Journal (down) Sleep
Volume 39 Issue 6 Pages 1311-1320
Keywords Human Health; Remote Sensing; Sleep
Abstract STUDY OBJECTIVES: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. METHODS: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. RESULTS: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). CONCLUSIONS: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.
Address NASA Ames Research Center, Moffett Field, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:27091523; PMCID:PMC4863221 Approved no
Call Number GFZ @ kyba @ Serial 2551
Permanent link to this record
 

 
Author Sletten, T.L.; Cappuccio, F.P.; Davidson, A.J.; Van Cauter, E.; Rajaratnam, S.M.W.; Scheer, F.A.J.L.
Title Health consequences of circadian disruption Type Journal Article
Year 2020 Publication Sleep Abbreviated Journal (down) Sleep
Volume 43 Issue 1 Pages
Keywords Human Health; Circadian Rhythm; Chronobiology; Sleep; Review
Abstract The circadian system is key for optimal functioning by maintaining synchrony between internal circadian rhythms, behaviors, and external cues. Many clinicians are not fully aware, however, of the far-reaching implications of the circadian system for human health. Clinical attention to circadian rhythms has largely focused on sleep disturbances. The impact of the circadian system on health is, however, much broader. Clinical diagnoses are often based on single time point assessments during the day, ignoring circadian influences on physiology. Even when time is considered, using (external) clock time ignores the large interindividual differences in internal timing.
Address Division of Sleep Medicine, Harvard Medical School, Boston, MA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:31930347 Approved no
Call Number IDA @ john @ Serial 2822
Permanent link to this record
 

 
Author Wang, H.-B.; Whittaker, D.S.; Truong, D.; Mulji, A.K.; Ghiani, C.A.; Loh, D.H.; Colwell, C.S.
Title Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease Type Journal Article
Year 2017 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal (down) Neurobiology of Sleep and Circadian Rhythms
Volume 2 Issue Pages 39-52
Keywords animals; Human Health
Abstract Patients with Huntington's disease (HD) exhibit movement disorders, psychiatric disturbance and cognitive impairments as the disease progresses. Abnormal sleep/wake cycles are common among HD patients with reports of delayed sleep onset, fatigue during the day, and a delayed pattern of melatonin secretion all of which suggest circadian dysfunction. Mouse models of HD confirm disrupted circadian rhythms with pathophysiology found in the central circadian clock (suprachiasmatic nucleus). Importantly, circadian dysfunction manifests early in disease, even before the classic motor symptoms, in both patients and mouse models. Therefore, we hypothesize that the circadian dysfunction may interact with the disease pathology and exacerbate the HD symptoms. If correct, early intervention may benefit patients and delay disease progression. One test of this hypothesis is to determine whether light therapy designed to strengthen this intrinsic timing system can delay the disease progression in mouse models. Therefore, we determined the impact of blue wavelength-enriched light on two HD models: the BACHD and Q175 mice. Both models received 6 hours of blue-light at the beginning of their daily light cycle for 3 months. After treatment, both genotypes showed improvements in their locomotor activity rhythm without significant change to their sleep behavior. Critically, treated mice of both lines exhibited improved motor performance compared to untreated controls. Focusing on the Q175 genotype, we sought to determine whether the treatment altered signaling pathways in brain regions known to be impacted by HD using NanoString gene expression assays. We found that the expression of several HD relevant markers was altered in the striatum and cortex of the treated mice. Our study demonstrates that strengthening the circadian system can delay the progression of HD in pre-clinical models. This work suggests that lighting conditions should be considered when managing treatment of HD and other neurodegenerative disorders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1626
Permanent link to this record
 

 
Author Akacem, L.D.; Wright, K.P.J.; LeBourgeois, M.K.
Title Bedtime and evening light exposure influence circadian timing in preschool-age children: A field study Type Journal Article
Year 2016 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal (down) Neurobiol Sleep Circadian Rhythms
Volume 1 Issue 2 Pages 27-31
Keywords Human Health
Abstract Light exposure and sleep timing are two factors that influence inter-individual variability in the timing of the human circadian clock. The aim of this study was to quantify the degree to which evening light exposure predicts variance in circadian timing over and above bedtime alone in preschool children. Participants were 21 children ages 4.5-5.0 years (4.7 +/- 0.2 years; 9 females). Children followed their typical sleep schedules for 4 days during which time they wore a wrist actigraph to assess sleep timing and a pendant light meter to measure minute-by-minute illuminance levels in lux. On the 5th day, children participated in an in-home dim-light melatonin onset (DLMO) assessment. Light exposure in the 2 h before bedtime was averaged and aggregated across the 4 nights preceding the DLMO assessment. Mean DLMO and bedtime were 19:22 +/- 01:04 and 20:07 +/- 00:46, respectively. Average evening light exposure was 710.1 +/- 1418.2 lux. Children with later bedtimes (lights-off time) had more delayed melatonin onset times (r=0.61, p=0.002). Evening light exposure was not independently associated with DLMO (r=0.32, p=0.08); however, a partial correlation between evening light exposure and DLMO when controlling for bedtime yielded a positive correlation (r=0.46, p=0.02). Bedtime explained 37.3% of the variance in the timing of DLMO, and evening light exposure accounted for an additional 13.3% of the variance. These findings represent an important step in understanding factors that influence circadian phase in preschool-age children and have implications for understanding a modifiable pathway that may underlie late sleep timing and the development of evening settling problems in early childhood.
Address Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9944 ISBN Medium
Area Expedition Conference
Notes PMID:28042611; PMCID:PMC5193478 Approved no
Call Number LoNNe @ kyba @ Serial 1755
Permanent link to this record