|   | 
Details
   web
Records
Author (up) Akacem, L.D.; Wright, K.P.J.; LeBourgeois, M.K.
Title Bedtime and evening light exposure influence circadian timing in preschool-age children: A field study Type Journal Article
Year 2016 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal Neurobiol Sleep Circadian Rhythms
Volume 1 Issue 2 Pages 27-31
Keywords Human Health
Abstract Light exposure and sleep timing are two factors that influence inter-individual variability in the timing of the human circadian clock. The aim of this study was to quantify the degree to which evening light exposure predicts variance in circadian timing over and above bedtime alone in preschool children. Participants were 21 children ages 4.5-5.0 years (4.7 +/- 0.2 years; 9 females). Children followed their typical sleep schedules for 4 days during which time they wore a wrist actigraph to assess sleep timing and a pendant light meter to measure minute-by-minute illuminance levels in lux. On the 5th day, children participated in an in-home dim-light melatonin onset (DLMO) assessment. Light exposure in the 2 h before bedtime was averaged and aggregated across the 4 nights preceding the DLMO assessment. Mean DLMO and bedtime were 19:22 +/- 01:04 and 20:07 +/- 00:46, respectively. Average evening light exposure was 710.1 +/- 1418.2 lux. Children with later bedtimes (lights-off time) had more delayed melatonin onset times (r=0.61, p=0.002). Evening light exposure was not independently associated with DLMO (r=0.32, p=0.08); however, a partial correlation between evening light exposure and DLMO when controlling for bedtime yielded a positive correlation (r=0.46, p=0.02). Bedtime explained 37.3% of the variance in the timing of DLMO, and evening light exposure accounted for an additional 13.3% of the variance. These findings represent an important step in understanding factors that influence circadian phase in preschool-age children and have implications for understanding a modifiable pathway that may underlie late sleep timing and the development of evening settling problems in early childhood.
Address Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9944 ISBN Medium
Area Expedition Conference
Notes PMID:28042611; PMCID:PMC5193478 Approved no
Call Number LoNNe @ kyba @ Serial 1755
Permanent link to this record
 

 
Author (up) Chang, A.-M.; Scheer, F.A.J.L.; Czeisler, C.A.; Aeschbach, D.
Title Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history Type Journal Article
Year 2013 Publication Sleep Abbreviated Journal Sleep
Volume 36 Issue 8 Pages 1239-1246
Keywords Arousal/*radiation effects; Attention/radiation effects; Cross-Over Studies; *Electroencephalography; Female; Humans; *Light; Male; Melatonin/blood/physiology; Psychomotor Performance/radiation effects; Reaction Time; Wakefulness/*radiation effects; Young Adult; Light history; alertness and performance; light exposure
Abstract STUDY OBJECTIVES: Light can induce an acute alerting response in humans; however, it is unknown whether the magnitude of this response is simply a function of the absolute illuminance of the light itself, or whether it depends on illuminance history preceding the stimulus. Here, we compared the effects of illuminance history on the alerting response to a subsequent light stimulus. DESIGN: A randomized, crossover design was used to compare the effect of two illuminance histories (1 lux vs. 90 lux) on the alerting response to a 6.5-h 90-lux light stimulus during the biological night. SETTING: Intensive Physiologic Monitoring Unit, Brigham and Women's Hospital, Boston, MA. PARTICIPANTS: Fourteen healthy young adults (6 F; 23.5 +/- 2.9 years). INTERVENTIONS: Participants were administered two 6.5-h light exposures (LE) of 90 lux during the biological night. For 3 days prior to each LE, participants were exposed to either 1 lux or 90 lux during the wake episode. MEASUREMENTS AND RESULTS: The alerting response to light was assessed using subjective sleepiness ratings, lapses of attention, and reaction times as measured with an auditory psychomotor vigilance task, as well as power density in the delta/theta range of the waking EEG. The alerting response to light was greater and lasted longer when the LE followed exposure to 1 lux compared to 90 lux light. CONCLUSION: The magnitude and duration of the alerting effect of light at night depends on the illuminance history and appears to be subject to sensitization and adaptation.
Address Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. amchang@rics.bwh.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:23904684; PMCID:PMC3700721 Approved no
Call Number IDA @ john @ Serial 145
Permanent link to this record
 

 
Author (up) Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Gotz, T.; Krebs, J.; Cajochen, C.
Title Acute exposure to evening blue-enriched light impacts on human sleep Type Journal Article
Year 2013 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res
Volume 22 Issue 5 Pages 573-580
Keywords Human Health
Abstract Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liege, Liege, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-1105 ISBN Medium
Area Expedition Conference
Notes PMID:23509952 Approved no
Call Number GFZ @ kyba @ Serial 2201
Permanent link to this record
 

 
Author (up) Cho, J.R.; Joo, E.Y.; Koo, D.L.; Hong, S.B.
Title Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms Type Journal Article
Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med
Volume 14 Issue 12 Pages 1422-1425
Keywords Eeg; Light; Polysomnography; Sleep; Sleep spindle; Slow oscillation
Abstract OBJECTIVES: Artificial lighting has been beneficial to society, but unnecessary light exposure at night may cause various health problems. We aimed to investigate how whole-night bedside light can affect sleep quality and brain activity. PATIENTS AND METHODS: Ten healthy sleepers underwent two polysomnography (PSG) sessions, one with the lights off and one with the lights on. PSG variables related to sleep quality were extracted and compared between lights-off and lights-on sleep. Spectral analysis was performed to rapid eye movement (REM) sleep and non-REM (NREM) sleep epochs to reveal any light-induced differences in background brain rhythms. RESULTS: Lights-on sleep was associated with increased stage 1 sleep (N1), decreased slow-wave sleep (SWS), and increased arousal index. Spectral analysis revealed that theta power (4-8Hz) during REM sleep and slow oscillation (0.5-1Hz), delta (1-4Hz), and spindle (10-16Hz) power during NREM sleep were decreased in lights-on sleep conditions. CONCLUSIONS: Sleeping with the light on not only causes shallow sleep and frequent arousals but also has a persistent effect on brain oscillations, especially those implicated in sleep depth and stability. Our study demonstrates additional hazardous effect of light pollution on health.
Address Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Biomedical Research Institute, Seoul, Republic of Korea; Division of Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes PMID:24210607 Approved no
Call Number IDA @ john @ Serial 141
Permanent link to this record
 

 
Author (up) Choi, S. J., Park, H. R. & Joo, E. Y.
Title Effects of Light on Daytime Sleep in 12 Hours Night Shift Workers: A Field Study Type Journal Article
Year 2019 Publication Korean Sleep Research Society Abbreviated Journal
Volume 16 Issue 1 Pages 26-35
Keywords Human Health; Sleep
Abstract Objectives: Night shift workers suffer from sleep and daytime disturbances due to circadian misalignment. To investigate the role of environmental light in daytime sleep following 12 h-night shift work. Methods: we enrolled 12 h-shift female nurses working at one university-affiliated hospital (n=10, mean age 26.6 years, shift work duration 3.8 years). This is a cross-over study to compare sleep between under light exposure (30 lux) and in the dark (<5 lux) following 12 h-night duty. Two sessions of experiments were underwent and the interval between sessions was about a month. Psychomotor vigilance test (PVT) had performed on awakening from sleep at each session and sleep-wake pattern had been monitored by actigraphy throughout the study period. Daytime sleep was also compared with night sleep of age-and gender matched daytime workers (n=10). Results: Sleep parameters and PVT scores were not different between two light conditions. Activities during sleep seemed to be more abundant under 30 lux condition than in the dark, which was not significant. Compared to night sleep, daytime sleep of shift workers was different in terms of rapid eye movement (REM) sleep. Three shift workers showed sleep onset REM sleep and first REM sleep period was the longest during daytime sleep. Conclusions: Unexpectedly, daytime sleep of 12 h night shift workers was well-maintained regardless of light exposure. Early occurrence of REM sleep and shorter sleep latency during daytime sleep suggest that shift workers meet with misalignment of circadian rhythm as well as increased homeostatic sleep pressure drive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Korean Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2635
Permanent link to this record