toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aarts, M.P.J.; Hartmeyer, S.L.; Morsink, K.; Kort, H.S.M.; de Kort, Y.A.W. url  doi
openurl 
  Title Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study Type Journal Article
  Year 2020 Publication Clocks & Sleep Abbreviated Journal Clocks & Sleep  
  Volume 2 Issue 2 Pages 225-245  
  Keywords Human Health  
  Abstract Nightshift workers go against the natural sleep–wake rhythm. Light can shift the circadian clock but can also induce acute alertness. This placebo-controlled exploratory field study examined the effectiveness of light glasses to improve alertness while reducing the sleep complaints of hospital nurses working nightshifts. In a crossover within-subjects design, 23 nurses participated, using treatment glasses and placebo glasses. Sleepiness and sleep parameters were measured. A linear mixed model analysis on sleepiness revealed no significant main effect of the light intervention. An interaction effect was found indicating that under the placebo condition, sleepiness was significantly higher on the first nightshift than on the last night, while under the treatment condition, sleepiness remained stable across nightshift sessions. Sleepiness during the commute home also showed a significant interaction effect, demonstrating that after the first nightshift, driver sleepiness was higher for placebo than for treatment. Subjective sleep quality showed a negative main effect of treatment vs. placebo, particularly after the first nightshift. In retrospect, both types of light glasses were self-rated as effective. The use of light glasses during the nightshift may help to reduce driver sleepiness during the commute home, which is relevant, as all participants drove home by car or (motor) bike.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2624-5175 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2977  
Permanent link to this record
 

 
Author Choi, S. J., Park, H. R. & Joo, E. Y. url  doi
openurl 
  Title Effects of Light on Daytime Sleep in 12 Hours Night Shift Workers: A Field Study Type Journal Article
  Year 2019 Publication Korean Sleep Research Society Abbreviated Journal  
  Volume 16 Issue 1 Pages 26-35  
  Keywords Human Health; Sleep  
  Abstract Objectives: Night shift workers suffer from sleep and daytime disturbances due to circadian misalignment. To investigate the role of environmental light in daytime sleep following 12 h-night shift work. Methods: we enrolled 12 h-shift female nurses working at one university-affiliated hospital (n=10, mean age 26.6 years, shift work duration 3.8 years). This is a cross-over study to compare sleep between under light exposure (30 lux) and in the dark (<5 lux) following 12 h-night duty. Two sessions of experiments were underwent and the interval between sessions was about a month. Psychomotor vigilance test (PVT) had performed on awakening from sleep at each session and sleep-wake pattern had been monitored by actigraphy throughout the study period. Daytime sleep was also compared with night sleep of age-and gender matched daytime workers (n=10). Results: Sleep parameters and PVT scores were not different between two light conditions. Activities during sleep seemed to be more abundant under 30 lux condition than in the dark, which was not significant. Compared to night sleep, daytime sleep of shift workers was different in terms of rapid eye movement (REM) sleep. Three shift workers showed sleep onset REM sleep and first REM sleep period was the longest during daytime sleep. Conclusions: Unexpectedly, daytime sleep of 12 h night shift workers was well-maintained regardless of light exposure. Early occurrence of REM sleep and shorter sleep latency during daytime sleep suggest that shift workers meet with misalignment of circadian rhythm as well as increased homeostatic sleep pressure drive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Korean Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ intern @ Serial 2635  
Permanent link to this record
 

 
Author Woods, H. C., & Scott, H. url  doi
openurl 
  Title Merging the Biological and Cognitive Processes of Sleep and Screens Type Journal Article
  Year 2019 Publication Current Sleep Medicine Reports Abbreviated Journal  
  Volume 5 Issue 3 Pages 150-155  
  Keywords Human Health  
  Abstract Purpose of Review

Screens are a permanent feature of life today and we have reached an interesting juncture with different research agendas investigating the biological and cognitive aspects of screen use separately. This review argues that it is timely and indeed essential that we bring together these research areas to fully understand both positive and negative aspects of screen use.

Recent Findings

More recent work is starting to take a more cohesive approach to understanding how device use pre-bedtime can impact our sleep by including both light and content in their experimental protocols which is a welcome development leading to a more nuanced understanding of both biological and cognitive processes.

Summary

We call for an open and collaborative approach to gain momentum in this direction of acknowledging both biological and cognitive factors enabling us to understand the relative impacts of both whilst using screens with regard to both light and content.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ intern @ Serial 2640  
Permanent link to this record
 

 
Author Cho, J.R.; Joo, E.Y.; Koo, D.L.; Hong, S.B. url  doi
openurl 
  Title Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 14 Issue 12 Pages 1422-1425  
  Keywords Eeg; Light; Polysomnography; Sleep; Sleep spindle; Slow oscillation  
  Abstract OBJECTIVES: Artificial lighting has been beneficial to society, but unnecessary light exposure at night may cause various health problems. We aimed to investigate how whole-night bedside light can affect sleep quality and brain activity. PATIENTS AND METHODS: Ten healthy sleepers underwent two polysomnography (PSG) sessions, one with the lights off and one with the lights on. PSG variables related to sleep quality were extracted and compared between lights-off and lights-on sleep. Spectral analysis was performed to rapid eye movement (REM) sleep and non-REM (NREM) sleep epochs to reveal any light-induced differences in background brain rhythms. RESULTS: Lights-on sleep was associated with increased stage 1 sleep (N1), decreased slow-wave sleep (SWS), and increased arousal index. Spectral analysis revealed that theta power (4-8Hz) during REM sleep and slow oscillation (0.5-1Hz), delta (1-4Hz), and spindle (10-16Hz) power during NREM sleep were decreased in lights-on sleep conditions. CONCLUSIONS: Sleeping with the light on not only causes shallow sleep and frequent arousals but also has a persistent effect on brain oscillations, especially those implicated in sleep depth and stability. Our study demonstrates additional hazardous effect of light pollution on health.  
  Address Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Biomedical Research Institute, Seoul, Republic of Korea; Division of Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24210607 Approved no  
  Call Number (up) IDA @ john @ Serial 141  
Permanent link to this record
 

 
Author Chang, A.-M.; Scheer, F.A.J.L.; Czeisler, C.A.; Aeschbach, D. url  doi
openurl 
  Title Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history Type Journal Article
  Year 2013 Publication Sleep Abbreviated Journal Sleep  
  Volume 36 Issue 8 Pages 1239-1246  
  Keywords Arousal/*radiation effects; Attention/radiation effects; Cross-Over Studies; *Electroencephalography; Female; Humans; *Light; Male; Melatonin/blood/physiology; Psychomotor Performance/radiation effects; Reaction Time; Wakefulness/*radiation effects; Young Adult; Light history; alertness and performance; light exposure  
  Abstract STUDY OBJECTIVES: Light can induce an acute alerting response in humans; however, it is unknown whether the magnitude of this response is simply a function of the absolute illuminance of the light itself, or whether it depends on illuminance history preceding the stimulus. Here, we compared the effects of illuminance history on the alerting response to a subsequent light stimulus. DESIGN: A randomized, crossover design was used to compare the effect of two illuminance histories (1 lux vs. 90 lux) on the alerting response to a 6.5-h 90-lux light stimulus during the biological night. SETTING: Intensive Physiologic Monitoring Unit, Brigham and Women's Hospital, Boston, MA. PARTICIPANTS: Fourteen healthy young adults (6 F; 23.5 +/- 2.9 years). INTERVENTIONS: Participants were administered two 6.5-h light exposures (LE) of 90 lux during the biological night. For 3 days prior to each LE, participants were exposed to either 1 lux or 90 lux during the wake episode. MEASUREMENTS AND RESULTS: The alerting response to light was assessed using subjective sleepiness ratings, lapses of attention, and reaction times as measured with an auditory psychomotor vigilance task, as well as power density in the delta/theta range of the waking EEG. The alerting response to light was greater and lasted longer when the LE followed exposure to 1 lux compared to 90 lux light. CONCLUSION: The magnitude and duration of the alerting effect of light at night depends on the illuminance history and appears to be subject to sensitization and adaptation.  
  Address Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. amchang@rics.bwh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23904684; PMCID:PMC3700721 Approved no  
  Call Number (up) IDA @ john @ Serial 145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: