toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Gotz, T.; Krebs, J.; Cajochen, C. url  doi
openurl 
  Title Acute exposure to evening blue-enriched light impacts on human sleep Type Journal Article
  Year 2013 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res  
  Volume 22 Issue (up) 5 Pages 573-580  
  Keywords Human Health  
  Abstract Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liege, Liege, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23509952 Approved no  
  Call Number GFZ @ kyba @ Serial 2201  
Permanent link to this record
 

 
Author Dumont, M.; Beaulieu, C. url  doi
openurl 
  Title Light exposure in the natural environment: relevance to mood and sleep disorders Type Journal Article
  Year 2007 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 8 Issue (up) 6 Pages 557-565  
  Keywords Human Health; Affect; *Biological Clocks; *Circadian Rhythm; Humans; *Light; Mood Disorders/*etiology; Sleep Disorders, Circadian Rhythm/*complications; Wakefulness; Work Schedule Tolerance  
  Abstract In addition to being necessary for vision, light also plays a primary role in circadian physiology. Humans are diurnal animals and their biological clock synchronizes their physiological functions in such a way that functions associated with activity happen in the daytime while functions associated with rest occur at night. A misalignment between the endogenous circadian clock and the desired sleep schedule is the main cause of circadian sleep disorders; it may be involved in certain mood disorders as well. Since light is the main environmental cue used by the biological clock to set its own timing in relation to the day-night cycle, inappropriate light exposure can be involved in the physiopathology of circadian disorders. Conversely, when handled properly, controlled light exposure can be used to treat some mood and sleep disorders. While the earliest studies in the field focused solely on exposure to bright light, contemporary studies aim at understanding how the entire profile of light-dark exposure can influence the circadian clock and, consequently, mood, sleep, and vigilance quality. Following a brief summary of the main concepts underlying the non-visual effects of light, this paper presents some studies using ambulatory measurements of light exposure to illustrate how these concepts apply in real-life situations and discusses the clinical relevance of light exposure in the natural environment for mood, sleep, and circadian disorders.  
  Address Chronobiology Laboratory, Sacre-Coeur Hospital of Montreal, Montreal, Quebec, Canada H4J 1C5. marie.dumont@umontreal.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17383230 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 736  
Permanent link to this record
 

 
Author Skene, D.J.; Arendt, J. url  doi
openurl 
  Title Circadian rhythm sleep disorders in the blind and their treatment with melatonin Type Journal Article
  Year 2007 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 8 Issue (up) 6 Pages 651-655  
  Keywords Human Health; Blindness/*complications; Chronotherapy; Circadian Rhythm/drug effects; Humans; Melatonin/*administration & dosage; Sleep/drug effects; Sleep Disorders, Circadian Rhythm/*drug therapy/*etiology; Treatment Outcome  
  Abstract People who are blind, in addition to having to cope with partial or no sight, have an added handicap; the transmission of ocular light from the retina to their circadian clock is impaired. At its worse, for example in people with both eyes enucleated, this lesion results in desynchronisation of the biological clock (located in the hypothalamic suprachiasmatic nuclei) from the 24h day/night environment. While in a desynchronised state, symptoms akin to jet lag are experienced (e.g., daytime sleepiness, poor night sleep, reduced alertness and performance during waking). This is a lifelong condition. Daily administration of exogenous melatonin is the current treatment of choice for this so-called “non-24h sleep/wake disorder”. Melatonin has been shown to correct the underlying circadian rhythm abnormality as well as improve sleep and reduce daytime napping. The effectiveness of melatonin therapy depends upon its time of administration relative to the timing of the person's circadian clock. If practicable, assessment of an individual's circadian phase (by measurement of the endogenous melatonin rhythm in plasma, saliva or urine) is recommended prior to commencing treatment to optimise melatonin's effectiveness.  
  Address Centre for Chronobiology, School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK. d.skene@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17420154 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 811  
Permanent link to this record
 

 
Author Ohayon, M.M.; Milesi, C. url  doi
openurl 
  Title Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population Type Journal Article
  Year 2016 Publication Sleep Abbreviated Journal Sleep  
  Volume 39 Issue (up) 6 Pages 1311-1320  
  Keywords Human Health; Remote Sensing; Sleep  
  Abstract STUDY OBJECTIVES: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. METHODS: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. RESULTS: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). CONCLUSIONS: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.  
  Address NASA Ames Research Center, Moffett Field, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27091523; PMCID:PMC4863221 Approved no  
  Call Number GFZ @ kyba @ Serial 2551  
Permanent link to this record
 

 
Author Sharkey, K.M.; Carskadon, M.A.; Figueiro, M.G.; Zhu, Y.; Rea, M.S. url  doi
openurl 
  Title Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules Type Journal Article
  Year 2011 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 12 Issue (up) 7 Pages 685-692  
  Keywords Affect/physiology/radiation effects; Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Female; Humans; *Light; Male; Melatonin/metabolism; Photoperiod; Phototherapy/*methods; Saliva/metabolism; Sleep/physiology/radiation effects; Sleep Disorders, Circadian Rhythm/prevention & control/*therapy; Stress, Psychological/prevention & control/therapy; Treatment Outcome; Young Adult; blue light  
  Abstract OBJECTIVE: We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age+/-SD=21.8+/-3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). METHODS: After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive “blue” (470nm, approximately 225lux, n=12) or “dim” (<1lux, n=13) light for 1h after waking each day. Head-worn “Daysimeters” measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2x2 ANOVA. RESULTS: After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean+/-SD) were 1.5+/-1.1h in the dim light group and 1.4+/-0.7h in the blue light group. CONCLUSIONS: Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults.  
  Address Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Box G-RIH, Providence, RI 02912, USA. katherine_sharkey@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21704557; PMCID:PMC3145013 Approved no  
  Call Number IDA @ john @ Serial 303  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: