|   | 
Details
   web
Records
Author Joo, E.Y.; Abbott, S.M.; Reid, K.J.; Wu, D.; Kang, J.; Wilson, J.; Zee, P.C.
Title Timing of light exposure and activity in adults with delayed sleep-wake phase disorder Type Journal Article
Year 2016 Publication (up) Sleep Medicine Abbreviated Journal Sleep Med
Volume 32 Issue Pages 259-265
Keywords Human Health
Abstract OBJECTIVE: To characterize the patterns of light exposure and physical activity level and assess their relationship with sleep quality and depressive symptoms in adults with delayed sleep-wake phase disorder (DSWPD). METHODS: 42 DSWPD (22 female, mean age 34.5 y) and 26 (+/-4 years) age-and-sex-matched controls (12 female, mean age 33.4 y) underwent seven days of light and activity monitoring. RESULTS: Individuals with DSWPD had significantly delayed bed times and wake times, but similar sleep duration compared to controls. Subjective sleep quality (Pittsburgh Sleep Quality Index (PSQI)) was poorer in DSWPDs compared to controls. Those with DSWPD had significantly more activity and light exposure late at night (2:00-4:00) and significantly less activity and light exposure in the morning (8:00-11:00). Total 24 h levels of light and activity were not significantly different between DSWPD and controls. However, the DSWPD group had significantly more light exposure than controls 22 h after waking, during their sleep period. Later light exposure correlated with higher depression scores [Beck Depression Index (BDI)] and poorer sleep quality (PSQI). CONCLUSIONS: The light exposure patterns observed in DSWPD likely contribute to and perpetuate the chronically delayed sleep and wake phase in these patients. In addition, increased light exposure during the sleep period may also contribute to the poor sleep quality and mood disorders that are common in these individuals.
Address Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. Electronic address: p-zee@northwestern.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes PMID:27964860 Approved no
Call Number LoNNe @ kyba @ Serial 1639
Permanent link to this record
 

 
Author Obayashi, K.; Yamagami, Y.; Kurumatani, N.; Saeki, K.
Title Bedroom lighting environment and incident diabetes mellitus: a longitudinal study of the HEIJO-KYO cohort Type Journal Article
Year 2019 Publication (up) Sleep Medicine Abbreviated Journal Sleep Medicine
Volume 65 Issue Pages 1-3
Keywords Human Health; Metabolic disorders; diabetes; geriatrics
Abstract Objectives

Light information received by the brain influences human circadian timing and metabolism; low-level light at night (LAN) significantly increased body mass and led to prediabetes in mice. We hypothesized that LAN exposure increases the diabetes risk in humans. The aim of the present study was to evaluate a longitudinal association between LAN exposure and the incidence of diabetes in a general population.

Methods

In our prospective cohort study, bedroom light intensity was measured at 1-min intervals in 678 elderly participants without diabetes at baseline. The average light intensity recorded between bedtimes and rise times over two consecutive nights was used in the analysis.

Results

During follow-up (median, 42 months), 19 of the 678 participants (mean age, 70.6 years) developed diabetes. Poisson regression models revealed that the incidence rate for diabetes was significantly higher in the LAN group (average ≥5 lux, N = 128) than the dark group (average <5 lux, N = 550) (incidence rate ratio, 3.74; 95% confidence interval (CI), 1.55–9.05; p=0.003). Further propensity score adjustments in relation to LAN produced consistent results (incidence rate ratio, 3.19; 95% CI, 1.38–7.35; p=0.007). When the cut-off value of LAN was decreased to 3 lux, the relationship remained significant (incidence rate ratio 2.74; 95% CI, 1.19–6.33; p=0.018).

Conclusions

Our findings suggest that LAN exposure increases the incidence of diabetes in a general elderly population. Further research involving a large cohort with new-onset diabetes is warranted to elucidate these findings.
Address Department of Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara, 634-8521, Japan; obayashi(at)naramed-u.ac.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2605
Permanent link to this record
 

 
Author Haus, E.L.; Smolensky, M.H.
Title Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation Type Journal Article
Year 2013 Publication (up) Sleep Medicine Reviews Abbreviated Journal Sleep Med Rev
Volume 17 Issue 4 Pages 273-284
Keywords Cell Cycle/physiology; Circadian Rhythm/*physiology; Epigenesis, Genetic/physiology; Humans; Light; Melatonin/physiology; Neoplasms/*etiology; Risk Factors; Sleep Deprivation/*complications; Work Schedule Tolerance/*physiology; oncogenesis
Abstract Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.
Address Department of Laboratory Medicine & Pathology, University of Minnesota and Health Partners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA. Erhard.X.Haus@HealthPartners.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1087-0792 ISBN Medium
Area Expedition Conference
Notes PMID:23137527 Approved no
Call Number IDA @ john @ Serial 157
Permanent link to this record
 

 
Author Lack, L.C.; Gradisar, M.; Van Someren, E.J.W.; Wright, H.R.; Lushington, K.
Title The relationship between insomnia and body temperatures Type Journal Article
Year 2008 Publication (up) Sleep Medicine Reviews Abbreviated Journal Sleep Med Rev
Volume 12 Issue 4 Pages 307-317
Keywords Human Health; Arousal/physiology; Body Temperature Regulation/*physiology; Circadian Rhythm/physiology; Homeostasis/physiology; Humans; Melatonin/blood; Phototherapy; Skin Temperature/physiology; Sleep Disorders, Circadian Rhythm/physiopathology/therapy; Sleep Initiation and Maintenance Disorders/*physiopathology/therapy; Sympathetic Nervous System/physiopathology; Wakefulness/physiology
Abstract Sleepiness and sleep propensity are strongly influenced by our circadian clock as indicated by many circadian rhythms, most commonly by that of core body temperature. Sleep is most conducive in the temperature minimum phase, but is inhibited in a “wake maintenance zone” before the minimum phase, and is disrupted in a zone following that phase. Different types of insomnia symptoms have been associated with abnormalities of the body temperature rhythm. Sleep onset insomnia is associated with a delayed temperature rhythm presumably, at least partly, because sleep is attempted during a delayed evening wake maintenance zone. Morning bright light has been used to phase advance circadian rhythms and successfully treat sleep onset insomnia. Conversely, early morning awakening insomnia has been associated with a phase advanced temperature rhythm and has been successfully treated with the phase delaying effects of evening bright light. Sleep maintenance insomnia has been associated not with a circadian rhythm timing abnormality, but with nocturnally elevated core body temperature. Combination of sleep onset and maintenance insomnia has been associated with a 24-h elevation of core body temperature supporting the chronic hyper-arousal model of insomnia. The possibility that these last two types of insomnia may be related to impaired thermoregulation, particularly a reduced ability to dissipate body heat from distal skin areas, has not been consistently supported in laboratory studies. Further studies of thermoregulation are needed in the typical home environment in which the insomnia is most evident.
Address School of Psychology, Flinders University, South Australia, Australia. leon.lack@flinders.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1087-0792 ISBN Medium
Area Expedition Conference
Notes PMID:18603220 Approved no
Call Number LoNNe @ kagoburian @ Serial 775
Permanent link to this record