|   | 
Details
   web
Records
Author Escobar, C.; Salgado-Delgado, R.; Gonzalez-Guerra, E.; Tapia Osorio, A.; Angeles-Castellanos, M.; Buijs, R.M.
Title Circadian disruption leads to loss of homeostasis and disease Type Journal Article
Year 2011 Publication Sleep Disorders Abbreviated Journal Sleep Disord
Volume 2011 Issue Pages 964510
Keywords Human Health
Abstract The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony.
Address Departamento de Anatomia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04360 Mexico City, DF, Mexico
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2090-3553 ISBN Medium
Area Expedition Conference
Notes PMID:23471148; PMCID:PMC3581131 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 745
Permanent link to this record
 

 
Author Dumont, M.; Beaulieu, C.
Title Light exposure in the natural environment: relevance to mood and sleep disorders Type Journal Article
Year 2007 Publication Sleep Medicine Abbreviated Journal Sleep Med
Volume 8 Issue 6 Pages 557-565
Keywords Human Health; Affect; *Biological Clocks; *Circadian Rhythm; Humans; *Light; Mood Disorders/*etiology; Sleep Disorders, Circadian Rhythm/*complications; Wakefulness; Work Schedule Tolerance
Abstract In addition to being necessary for vision, light also plays a primary role in circadian physiology. Humans are diurnal animals and their biological clock synchronizes their physiological functions in such a way that functions associated with activity happen in the daytime while functions associated with rest occur at night. A misalignment between the endogenous circadian clock and the desired sleep schedule is the main cause of circadian sleep disorders; it may be involved in certain mood disorders as well. Since light is the main environmental cue used by the biological clock to set its own timing in relation to the day-night cycle, inappropriate light exposure can be involved in the physiopathology of circadian disorders. Conversely, when handled properly, controlled light exposure can be used to treat some mood and sleep disorders. While the earliest studies in the field focused solely on exposure to bright light, contemporary studies aim at understanding how the entire profile of light-dark exposure can influence the circadian clock and, consequently, mood, sleep, and vigilance quality. Following a brief summary of the main concepts underlying the non-visual effects of light, this paper presents some studies using ambulatory measurements of light exposure to illustrate how these concepts apply in real-life situations and discusses the clinical relevance of light exposure in the natural environment for mood, sleep, and circadian disorders.
Address Chronobiology Laboratory, Sacre-Coeur Hospital of Montreal, Montreal, Quebec, Canada H4J 1C5. marie.dumont@umontreal.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes PMID:17383230 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 736
Permanent link to this record
 

 
Author Shochat, T.
Title Impact of lifestyle and technology developments on sleep Type Journal Article
Year 2012 Publication Nature and Science of Sleep Abbreviated Journal Nat Sci Sleep
Volume 4 Issue Pages 19-31
Keywords Human Health; behavior; lifestyle; sleep; technology
Abstract Although the physiological and psychological mechanisms involved in the development of sleep disorders remain similar throughout history, factors that potentiate these mechanisms are closely related to the “zeitgeist”, ie, the sociocultural, technological and lifestyle trends which characterize an era. Technological advancements have afforded modern society with 24-hour work operations, transmeridian travel and exposure to a myriad of electronic devices such as televisions, computers and cellular phones. Growing evidence suggests that these advancements take their toll on human functioning and health via their damaging effects on sleep quality, quantity and timing. Additional behavioral lifestyle factors associated with poor sleep include weight gain, insufficient physical exercise and consumption of substances such as caffeine, alcohol and nicotine. Some of these factors have been implicated as self-help aids used to combat daytime sleepiness and impaired daytime functioning. This review aims to highlight current lifestyle trends that have been shown in scientific investigations to be associated with sleep patterns, sleep duration and sleep quality. Current understanding of the underlying mechanisms of these associations will be presented, as well as some of the reported consequences. Available therapies used to treat some lifestyle related sleep disorders will be discussed. Perspectives will be provided for further investigation of lifestyle factors that are associated with poor sleep, including developing theoretical frameworks, identifying underlying mechanisms, and establishing appropriate therapies and public health interventions aimed to improve sleep behaviors in order to enhance functioning and health in modern society.
Address Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1179-1608 ISBN Medium
Area Expedition Conference
Notes PMID:23616726; PMCID:PMC3630968 Approved no
Call Number LoNNe @ christopher.kyba @ Serial (down) 515
Permanent link to this record
 

 
Author Kim, J.; Hwang, K.; Cho, J.; Koo, D.; Joo, E.; Hong, S.
Title Effect of bedside light on sleep quality and background eeg rhythms Type Journal Article
Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine
Volume 14 Issue Pages e170
Keywords Human Health
Abstract Artificial lighting has benefited society by extending the length of a productive day, but it can be ”light pollution” when it becomes excessive. Unnecessary exposure to artificial light at night can cause myopia, obesity, metabolic disorders and even some type of cancers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial (down) 502
Permanent link to this record
 

 
Author Kayaba, M.; Iwayama, K.; Ogata, H.; Seya, Y.; Tokuyama, K.; Satoh, M.
Title Drowsiness and low energy metabolism in the following morning induced by nocturnal blue light exposure Type Journal Article
Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine
Volume 14 Issue Pages e166-e167
Keywords blue light; light exposure; light at night; circadian disruption; drowsiness; melatonin; metabolism; sleep
Abstract Introduction

Evening light exposure debilitates the circadian rhythm and elicits sleep disturbance. Blue light peak wavelengths, around 460 nm, suppress melatonin secretion via the non-image-forming system. The effects of nocturnal blue light exposure on sleep have been reported to be specific but rather small (Münch, 2008). This study was designed to assess the effect of nocturnal blue light exposure on sleep and energy metabolism until noon the next day.

Materials and methods

Nine healthy male volunteers aged between 21 and 25 participated in this study which had a balanced cross-over design with intrasubject comparisons. After 2 h dark adaptation, the subjects were exposed to blue light or no light for 2 h. The peak wavelength of the blue LED was 465 nm, and the horizontal irradiance of the blue light at the height of eye was at 7.02fÊW/cm2. Sleep was recorded polysomnographically, and energy metabolism was measured with a whole body indirect calorimeter.

Results

There were no significant differences in sleep architecture and energy metabolism during the night. However, dozing (stages 1 and 2) was significantly higher (26.0 < 29.4 vs 6.3 < 8.1 min, P < 0.05), and energy expenditure, O2 consumption, CO2 production and the thermic effect of food (increase in energy expenditure after breakfast) were significantly lower the following morning in the blue light exposure subjects.

Conclusion

Contrary to our expectation, sleep architecture and energy metabolism during sleep were not affected by evening exposure to blue light. It might be due to our milder intervention by which subjects in a sitting position did not gaze at the light source set on the ceiling, while the subjects in previous studies directly received brighter light via custom built goggles (Cajochen, 2005; Münch, 2008) or gazed at a light source under the influence of mydriatic agents to dilate pupils (Brainard, 2001). New findings of the present study were that dozing (stages 1 and 2) was significantly increased, and energy metabolism was significantly lower the following morning in blue light exposed subjects. This suggests that modulation of the circadian rhythm is affected by nocturnal blue light exposure and the effect continues in the following daytime even if the intervention was mild.
Address University of Tsukuba, Graduate School of Comprehensive Human Sciences, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 349
Permanent link to this record