toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Lang, D.; Gotz, T.; Krebs, J.; Cajochen, C. url  doi
openurl 
  Title Acute exposure to evening blue-enriched light impacts on human sleep Type Journal Article
  Year (down) 2013 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res  
  Volume 22 Issue 5 Pages 573-580  
  Keywords Human Health  
  Abstract Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liege, Liege, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23509952 Approved no  
  Call Number GFZ @ kyba @ Serial 2201  
Permanent link to this record
 

 
Author Smith, M.R.; Eastman, C.I. url  doi
openurl 
  Title Shift work: health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment Type Journal Article
  Year (down) 2012 Publication Nature and Science of Sleep Abbreviated Journal Nat Sci Sleep  
  Volume 4 Issue Pages 111-132  
  Keywords bright light; circadian rhythms; melatonin; night work; phase-shifting; sleep  
  Abstract There are three mechanisms that may contribute to the health, performance, and safety problems associated with night-shift work: (1) circadian misalignment between the internal circadian clock and activities such as work, sleep, and eating, (2) chronic, partial sleep deprivation, and (3) melatonin suppression by light at night. The typical countermeasures, such as caffeine, naps, and melatonin (for its sleep-promoting effect), along with education about sleep and circadian rhythms, are the components of most fatigue risk-management plans. We contend that these, while better than nothing, are not enough because they do not address the underlying cause of the problems, which is circadian misalignment. We explain how to reset (phase-shift) the circadian clock to partially align with the night-work, day-sleep schedule, and thus reduce circadian misalignment while preserving sleep and functioning on days off. This involves controlling light and dark using outdoor light exposure, sunglasses, sleep in the dark, and a little bright light during night work. We present a diagram of a sleep-and-light schedule to reduce circadian misalignment in permanent night work, or a rotation between evenings and nights, and give practical advice on how to implement this type of plan.  
  Address Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1179-1608 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23620685; PMCID:PMC3630978 Approved no  
  Call Number IDA @ john @ Serial 149  
Permanent link to this record
 

 
Author Shochat, T. url  doi
openurl 
  Title Impact of lifestyle and technology developments on sleep Type Journal Article
  Year (down) 2012 Publication Nature and Science of Sleep Abbreviated Journal Nat Sci Sleep  
  Volume 4 Issue Pages 19-31  
  Keywords Human Health; behavior; lifestyle; sleep; technology  
  Abstract Although the physiological and psychological mechanisms involved in the development of sleep disorders remain similar throughout history, factors that potentiate these mechanisms are closely related to the “zeitgeist”, ie, the sociocultural, technological and lifestyle trends which characterize an era. Technological advancements have afforded modern society with 24-hour work operations, transmeridian travel and exposure to a myriad of electronic devices such as televisions, computers and cellular phones. Growing evidence suggests that these advancements take their toll on human functioning and health via their damaging effects on sleep quality, quantity and timing. Additional behavioral lifestyle factors associated with poor sleep include weight gain, insufficient physical exercise and consumption of substances such as caffeine, alcohol and nicotine. Some of these factors have been implicated as self-help aids used to combat daytime sleepiness and impaired daytime functioning. This review aims to highlight current lifestyle trends that have been shown in scientific investigations to be associated with sleep patterns, sleep duration and sleep quality. Current understanding of the underlying mechanisms of these associations will be presented, as well as some of the reported consequences. Available therapies used to treat some lifestyle related sleep disorders will be discussed. Perspectives will be provided for further investigation of lifestyle factors that are associated with poor sleep, including developing theoretical frameworks, identifying underlying mechanisms, and establishing appropriate therapies and public health interventions aimed to improve sleep behaviors in order to enhance functioning and health in modern society.  
  Address Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1179-1608 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23616726; PMCID:PMC3630968 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 515  
Permanent link to this record
 

 
Author Sharkey, K.M.; Carskadon, M.A.; Figueiro, M.G.; Zhu, Y.; Rea, M.S. url  doi
openurl 
  Title Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules Type Journal Article
  Year (down) 2011 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 12 Issue 7 Pages 685-692  
  Keywords Affect/physiology/radiation effects; Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Female; Humans; *Light; Male; Melatonin/metabolism; Photoperiod; Phototherapy/*methods; Saliva/metabolism; Sleep/physiology/radiation effects; Sleep Disorders, Circadian Rhythm/prevention & control/*therapy; Stress, Psychological/prevention & control/therapy; Treatment Outcome; Young Adult; blue light  
  Abstract OBJECTIVE: We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age+/-SD=21.8+/-3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). METHODS: After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive “blue” (470nm, approximately 225lux, n=12) or “dim” (<1lux, n=13) light for 1h after waking each day. Head-worn “Daysimeters” measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2x2 ANOVA. RESULTS: After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean+/-SD) were 1.5+/-1.1h in the dim light group and 1.4+/-0.7h in the blue light group. CONCLUSIONS: Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults.  
  Address Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Box G-RIH, Providence, RI 02912, USA. katherine_sharkey@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21704557; PMCID:PMC3145013 Approved no  
  Call Number IDA @ john @ Serial 303  
Permanent link to this record
 

 
Author Kessel, L.; Siganos, G.; Jorgensen, T.; Larsen, M. url  doi
openurl 
  Title Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing Type Journal Article
  Year (down) 2011 Publication Sleep Abbreviated Journal Sleep  
  Volume 34 Issue 9 Pages 1215-1219  
  Keywords Adult; Age Factors; Aging/*pathology/physiology; Circadian Rhythm/physiology; Cross-Sectional Studies; Female; Fluorometry; Humans; Lens, Crystalline/*pathology/physiopathology; *Light; Male; Middle Aged; Retina/*physiopathology; Risk Factors; *Scattering, Radiation; Sleep Disorders/*etiology; Circadian rhythm; cataract; melanopsin; sleep; blue light  
  Abstract STUDY OBJECTIVES: Sleep pattern and circadian rhythms are regulated via the retinohypothalamic tract in response to stimulation of a subset of retinal ganglion cells, predominantly by blue light (450-490 nm). With age, the transmission of blue light to the retina is reduced because of the aging process of the human lens, and this may impair the photoentrainment of circadian rhythm leading to sleep disorders. The aim of the study was to examine the association between lens aging and sleep disorders. DESIGN: Cross-sectional population based study. SETTING: The study was performed at the Research Center for Prevention and Health, Glostrup Hospital, Denmark and at the Department of Ophthalmology, Herlev Hospital, Denmark. PARTICIPANTS: An age- and sex-stratified sample of 970 persons aged 30 to 60 years of age drawn from a sample randomly selected from the background population. INTERVENTIONS: Not applicable. MEASUREMENTS AND RESULTS: Sleep disturbances were evaluated by a combination of questionnaire and the use of prescription sleeping medication. Lens aging (transmission and yellowing) was measured objectively by lens autofluorometry. The risk of sleep disturbances was significantly increased when the transmission of blue light to the retina was low, even after correction for the effect of age and other confounding factors such as smoking habits, diabetes mellitus, gender, and the risk of ischemic heart disease (P < 0.0001). CONCLUSIONS: Filtration of blue light by the aging lens was significantly associated with an increased risk of sleep disturbances. We propose that this is a result of disturbance of photoentrainment of circadian rhythms.  
  Address Department of Ophthalmology, Glostrup Hospital, University of Copenhagen, Denmark. line.kessel@dadlnet.dk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21886359; PMCID:PMC3157663 Approved no  
  Call Number IDA @ john @ Serial 344  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: