Records |
Author |
Chen, S.; Li, W.; Yang, S.; Zhang, B.; Li, T.; Du, Y.; Yang, M.; Zhao, H. |
Title |
Evaluation method and reduction measures for the flicker effect in road lighting using fixed Low Mounting Height Luminaires |
Type |
Journal Article |
Year |
2019 |
Publication |
Tunnelling and Underground Space Technology |
Abbreviated Journal |
Tunnelling and Underground Space Technology |
Volume  |
93 |
Issue |
|
Pages |
103101 |
Keywords |
Lighting; Vision |
Abstract |
Low Mounting Height Luminaires (LMHL) are used in many cities on viaducts, cross-sea and cross-river bridges due to their unique advantages. However, the flicker effect is an important factor that needs to be considered in road lighting using fixed LMHL. At present, there are not many researchers in the field of international lighting. Previous types of road lighting design were based on the method of the tunnel lighting flicker effect. At the same time, the flicker effect is mainly based on the subjective feelings of people but is not quantified. In this paper, the Flicker Index (FI) is calculated by measuring the parameters of streetlamps to evaluation flicker effect. Secondly, the suggestion to offset the flicker effect in CIE 88-2004 “Guide for the Lighting of Road Tunnels and Underpasses” is to limit the speed of the vehicle and adjust the road light spacing to avoid the flicker sensitive area on human eyes, while ignoring the essential problem of how the flicker effect is generated through the energy level of the stimulating optical signal. Two factors affecting the strength of the flicker effect are proposed: energy ratio and duty cycle. The duty cycle, in time, refers to the proportion of the strong and weak flashing signals during the period; in space, it refers to the proportional relationship between the length of the luminaire and the distance between the lamps, which is related to the running speed of the vehicle. It is consistent with the CIE recommendations for flicker. Thirdly, the essence of the flicker effect is the problem of the energy level of the stimulus signal. This study investigated the reduction in the brightness of the light source, hence reducing the energy of the visual stimulation signal to the human eye in order to judge the degree of fatigue in human vision. The experimental results show that the degree of fatigue in human vision decreases when the brightness of the experimental light source decreases. Therefore, the key to changing the flicker effect of LMHL is to reduce the contrast between the surface brightness of the luminaire and the brightness of the spatial background. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0886-7798 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2663 |
Permanent link to this record |
|
|
|
Author |
Nang, E.E.K.; Abuduxike, G.; Posadzki, P.; Divakar, U.; Visvalingam, N.; Nazeha, N.; Dunleavy, G.; Christopoulos, G.I.; Soh, C.-K.; Jarbrink, K.; Soljak, M.; Car, J. |
Title |
Review of the potential health effects of light and environmental exposures in underground workplaces |
Type |
Journal Article |
Year |
2019 |
Publication |
Tunnelling and Underground Space Technology |
Abbreviated Journal |
Tunnelling and Underground Space Technology |
Volume  |
84 |
Issue |
|
Pages |
201-209 |
Keywords |
Human Health; Review |
Abstract |
Underground workplaces are an important element in modern urban planning. As a result, an increasing but unquantified proportion of the population is being regularly exposed to them. We narratively reviewed the literature on the range of possible environmental exposures, and the possible health effects, to identify future research directions. There is a large but mainly observational research literature on likely underground exposures, including effects of artificial lighting, shift working and light at night on circadian disruptions and associated health effects. There are five studies comparing underground and aboveground environments. Shift working, artificial lighting and poor sleep quality leading to circadian disruption is one physiologic pathway. Working underground may increase exposure to these risks, and may also be associated with vitamin D deficiency, sick building syndrome, excessive noise, radon exposure, and negative psychological effects. In order to plan appropriate interventions, we need to expand our knowledge of the health effects of underground environments. Larger and longer-term studies are required to measure a range of human factors, environmental exposures and confounders. Controlled trials with health economic analyses of new lighting technologies are also required. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0886-7798 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2112 |
Permanent link to this record |