toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Cohen, J.H.; Berge, J.; Moline, M.A.; Sorensen, A.J.; Last, K.; Falk-Petersen, S.; Renaud, P.E.; Leu, E.S.; Grenvald, J.; Cottier, F.; Cronin, H.; Menze, S.; Norgren, P.; Varpe, O.; Daase, M.; Darnis, G.; Johnsen, G. url  doi
openurl 
  Title Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton? Type Journal Article
  Year 2015 Publication PloS one Abbreviated Journal PLoS One  
  Volume 10 Issue 6 Pages e0126247  
  Keywords Animals  
  Abstract The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79 degrees N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 mumol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.  
  Address The University Centre in Svalbard, 9171, Longyearbyen, Norway; Applied Underwater Robotics Lab, Depts of Biology and Marine Technology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26039111; PMCID:PMC4454649 Approved no  
  Call Number LoNNe @ kyba @ Serial 1277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: