|   | 
Author (up) Oike, H.; Sakurai, M.; Ippoushi, K.; Kobori, M.
Title Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work Type Journal Article
Year 2015 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun
Volume 465 Issue 3 Pages 556-561
Keywords Animals; *Circadian Clocks; *Disease Models, Animal; *Feeding Behavior; Jet Lag Syndrome/*physiopathology; Male; Mice; Mice, Inbred C57BL; Obesity/etiology/*physiopathology/*prevention & control; Photoperiod; Circadian rhythm; Clock genes; Jet lag; Metabolic disorders; Obesity; Shift work
Abstract Recent findings have uncovered intimate relationships between circadian clocks and energy metabolism. Epidemiological studies have shown that the frequency of obesity and metabolic disorders increases among shift-workers. Here we found that a chronic shift in light/dark (LD) cycles comprising an advance of six hours twice weekly, induced obesity in mice. Under such conditions that imitate jet lag/shift work, body weight and glucose intolerance increased, more fat accumulated in white adipose tissues and the expression profiles of metabolic genes changed in the liver compared with normal LD conditions. Mice fed at a fixed 12 h under the LD shift notably did not develop symptoms of obesity despite isocaloric intake. These results suggest that jet lag/shift work induces obesity as a result of fluctuating feeding times and it can be prevented by fixing meal times. This rodent model of obesity might serve as a useful tool for understanding why shift work induces metabolic disorders.
Address Food Function Division, National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan; oike(at)affrc.go.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-291X ISBN Medium
Area Expedition Conference
Notes PMID:26297949 Approved no
Call Number IDA @ john @ Serial 1318
Permanent link to this record