toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Wu, J.; Dauchy, R.T.; Tirrell, P.C.; Wu, S.S.; Lynch, D.T.; Jitawatanarat, P.; Burrington, C.M.; Dauchy, E.M.; Blask, D.E.; Greene, M.W. url  doi
openurl 
  Title Light at Night Activates IGF-1R/PDK1 Signaling and Accelerates Tumor Growth in Human Breast Cancer Xenografts Type Journal Article
  Year 2011 Publication Cancer Research Abbreviated Journal Cancer Res  
  Volume 71 Issue 7 Pages 2622-2631  
  Keywords human health; mammals; Circadian Rhythm; nude rats  
  Abstract Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1608  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: