|
Record |
Links |
|
Author  |
Rahman, S.A.; St Hilaire, M.A.; Lockley, S.W. |

|
|
Title |
The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Physiology & Behavior |
Abbreviated Journal |
Physiol Behav |
|
|
Volume |
177 |
Issue |
|
Pages |
221-229 |
|
|
Keywords |
Human Health |
|
|
Abstract |
We compared the effects of bedroom-intensity light from a standard fluorescent and a blue- (i.e., short-wavelength) depleted LED source on melatonin suppression, alertness, and sleep. Sixteen healthy participants (8 females) completed a 4-day inpatient study. Participants were exposed to blue-depleted circadian-sensitive (C-LED) light and a standard fluorescent light (FL, 4100K) of equal illuminance (50lx) for 8h prior to a fixed bedtime on two separate days in a within-subject, randomized, cross-over design. Each light exposure day was preceded by a dim light (<3lx) control at the same time 24h earlier. Compared to the FL condition, control-adjusted melatonin suppression was significantly reduced. Although subjective sleepiness was not different between the two light conditions, auditory reaction times were significantly slower under C-LED conditions compared to FL 30min prior to bedtime. EEG-based correlates of alertness corroborated the reduced alertness under C-LED conditions as shown by significantly increased EEG spectral power in the delta-theta (0.5-8.0Hz) bands under C-LED as compared to FL exposure. There was no significant difference in total sleep time (TST), sleep efficiency (SE%), and slow-wave activity (SWA) between the two conditions. Unlike melatonin suppression and alertness, a significant order effect was observed on all three sleep variables, however. Individuals who received C-LED first and then FL had increased TST, SE% and SWA averaged across both nights compared to individuals who received FL first and then C-LED. These data show that the spectral characteristics of light can be fine-tuned to attenuate non-visual responses to light in humans. |
|
|
Address |
Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States; Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, United States |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-9384 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:28472667 |
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1659 |
|
Permanent link to this record |