toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. url  doi
openurl 
  Title A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B Type Journal Article
  Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 215 Issue Pages 300-312  
  Keywords Remote Sensing  
  Abstract Artificial light at night (ALAN) provides a unique footprint of human activities and settlements. However, the adverse effects of ALAN on human health and ecosystems have not been well understood. Because of a lack of high resolution data, studies of ALAN in China have been confined to coarse resolution, and fine-scale details are missing. The fine details of ALAN are pertinent, because the highly dense population in Chinese cities has created a distinctive urban lighting pattern. In this paper, we introduced a new generation of high spatial resolution and multi-spectral night-time light imagery from the satellite JL1-3B. We examined its effectiveness for monitoring the spatial pattern and discriminating the types of artificial light based on a case study of Hangzhou, China. Specifically, local Moran's I analysis was applied to identify artificial light hotspots. Then, we analyzed the relationship between artificial light brightness and land uses at the parcel-level, which were generated from GF-2 imagery and open social datasets. Third, a machine learning based method was proposed to discriminate the type of lighting sources – between high pressure sodium lamps (HPS) and light-emitting diode lamps (LED) – by incorporating their spectral information and morphology feature. The result shows a complicated heterogeneity of illumination characteristics across different land uses, where main roads, commercial and institutional areas were brightly lit while residential area, industrial area and agricultural land were dark at night. It further shows that the proposed method was effective at separating light emitted by HPS and LED, with an overall accuracy and kappa coefficient of 83.86% and 0.67, respectively. This study demonstrates the effectiveness of JL1-3B and its superiority over previous night-time light data in detecting details of lighting objects and the nightscape pattern, and suggests that JL1-3B and alike could open up new opportunities for the advancement of night-time remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1945  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: