toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Taufique, S.K.T.; Prabhat, A.; Kumar, V. url  doi
openurl 
  Title Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids Type Journal Article
  Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci  
  Volume in press Issue Pages in press  
  Keywords Animals  
  Abstract Artificial light at night induces circadian disruptions and causes cognitive impairment and mood disorders; yet very little is known about the neural and molecular correlates of these effects in diurnal animals. We manipulated the night environment and examined cellular and molecular changes in hippocampus, the brain region involved in cognition and mood, of Indian house crows (Corvus splendens) exposed to 12 h light (150 lux): 12 h darkness (0 lux). Diurnal corvids are an ideal model species with cognitive abilities at par with mammals. Dim light (6 lux) at night (dLAN) altered daily activity:rest pattern, reduced sleep and induced depressive-like responses (decreased eating and self-grooming, self-mutilation and reduced novel object exploration); return to an absolute dark night reversed these negative effects. dLAN suppressed nocturnal melatonin levels, however, diurnal corticosterone levels were unaffected. Concomitant reduction of immunoreactivity for DCX and BDNF suggested dLAN-induced suppression of hippocampal neurogenesis and compromised neuronal health. dLAN also negatively influenced hippocampal expression of genes associated with depressive-like responses (bdnf, il-1beta, tnfr1, nr4a2), but not of those associated with neuronal plasticity (egr1, creb, syngap, syn2, grin2a, grin2b), cellular oxidative stress (gst, sod3, cat1) and neuronal death (caspase2, caspase3, foxo3). Furthermore, we envisaged the role of BDNF and showed epigenetic modification of bdnf gene by decreased histone H3 acetylation and increased hdac4 expression under dLAN. These results demonstrate transcriptional and epigenetic bases of dLAN-induced negative effects in diurnal crows, and provide insights into the risks of exposure to illuminated nights to animals including humans in an urban setting. This article is protected by copyright. All rights reserved.  
  Address IndoUS Center for Biological Timing Department of Zoology, University of Delhi, Delhi, 110 007, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-816X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30218624 Approved no  
  Call Number GFZ @ kyba @ Serial 2010  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: