toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Li, K.; Chen, Y.; Li, Y. url  doi
  Title The Random Forest-Based Method of Fine-Resolution Population Spatialization by Using the International Space Station Nighttime Photography and Social Sensing Data Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 10 Pages 1650  
  Keywords Remote Sensing  
  Abstract Despite the importance of high-resolution population distribution in urban planning, disaster prevention and response, region economic development, and improvement of urban habitant environment, traditional urban investigations mainly focused on large-scale population spatialization by using coarse-resolution nighttime light (NTL) while few efforts were made to fine-resolution population mapping. To address problems of generating small-scale population distribution, this paper proposed a method based on the Random Forest Regression model to spatialize a 25 m population from the International Space Station (ISS) photography and urban function zones generated from social sensing data—point-of-interest (POI). There were three main steps, namely HSL (hue saturation lightness) transformation and saturation calibration of ISS, generating functional-zone maps based on point-of-interest, and spatializing population based on the Random Forest model. After accuracy assessments by comparing with WorldPop, the proposed method was validated as a qualified method to generate fine-resolution population spatial maps. In the discussion, this paper suggested that without help of auxiliary data, NTL cannot be directly employed as a population indicator at small scale. The Variable Importance Measure of the RF model confirmed the correlation between features and population and further demonstrated that urban functions performed better than LULC (Land Use and Land Cover) in small-scale population mapping. Urban height was also shown to improve the performance of population disaggregation due to its compensation of building volume. To sum up, this proposed method showed great potential to disaggregate fine-resolution population and other urban socio-economic attributes.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2038  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: