toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Pulgar, J.; Zeballos, D.; Vargas, J.; Aldana, M.; Manriquez, P.; Manriquez, K.; Quijon, P.A.; Widdicombe, S.; Anguita, C.; Quintanilla, D.; Duarte, C. url  doi
  Title Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN) Type Journal Article
  Year 2018 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 244 Issue Pages 361-366  
  Keywords Animals  
  Abstract The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.  
  Address Departamento de Ecologia & Biodiversidad, Facultad de Ciencia de la Vida, Universidad Andres Bello, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepcion, Concepcion, Chile  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30352350 Approved no  
  Call Number GFZ @ kyba @ Serial 2043  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: