toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Du, M.; Wang, L.; Zou, S.; Shi, C. url  doi
  Title Modeling the Census Tract Level Housing Vacancy Rate with the Jilin1-03 Satellite and Other Geospatial Data Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 12 Pages 1920  
  Keywords Remote Sensing  
  Abstract The vacant house is an essential phenomenon of urban decay and population loss. Exploration of the correlations between housing vacancy and some socio-environmental factors is conducive to understanding the mechanism of urban shrinking and revitalization. In recent years, rapidly developing night-time remote sensing, which has the ability to detect artificial lights, has been widely applied in applications associated with human activities. Current night-time remote sensing studies on housing vacancy rates are limited by the coarse spatial resolution of data. The launch of the Jilin1-03 satellite, which carried a high spatial resolution (HSR) night-time imaging camera, provides a new supportive data source. In this paper, we examined this new high spatial resolution night-time light dataset in housing vacancy rate estimation. Specifically, a stepwise multivariable linear regression model was engaged to estimate the housing vacancy rate at a very fine scale, the census tract level. Three types of variables derived from geospatial data and night-time image represent the physical environment, landuse (LU) structure, and human activities, respectively. The linear regression models were constructed and analyzed. The analysis results show that (1) the HVRs estimating model using the Jilin1-03 satellite and other ancillary geospatial data fits well with the Census statistical data (adjusted R2 = 0.656, predicted R2 = 0.603, RMSE = 0.046) and thus is a valid estimation model; (2) the Jilin1-03 satellite night-time data contributed a 28% (from 0.510 to 0.656) fitting accuracy increase and a 68% (from 0.359 to 0.603) predicting accuracy increase in the estimate model of the housing vacancy rate. Reflecting socio-economic conditions, the luminous intensity of commercial areas derived from the Jilin1-03 satellite is the most influential variable to housing vacancy. Land use structure indirectly and partially demonstrated that the social environment factors in the community have strong correlations with residential vacancy. Moreover, the physical environment factor, which depicts vegetation conditions in the residential areas, is also a significant indicator of housing vacancy. In conclusion, the emergence of HSR night light data opens a new door to future microscopic scale study within cities.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2124  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: