toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Lee, S.; Kakitsuba, N.; Katsuura, T. url  doi
openurl 
  Title Do green-blocking glasses enhance the nonvisual effects of white polychromatic light? Type Journal Article
  Year 2018 Publication Journal of Physiological Anthropology Abbreviated Journal J Physiol Anthropol  
  Volume 37 Issue 1 Pages 29  
  Keywords Human Health; Vision  
  Abstract BACKGROUND: It is well known that light containing the blue component stimulates the intrinsically photosensitive retinal ganglion cells (ipRGCs) and plays a role in melatonin suppression and pupillary constriction. In our previous studies, we verified that simultaneous exposure to blue and green light resulted in less pupillary constriction than blue light exposure. Hence, we hypothesized that the nonvisual effects of polychromatic white light might be increased by blocking the green component. Therefore, we conducted an experiment using optical filters that blocked blue or green component and examined the nonvisual effects of these lights on pupillary constriction and electroencephalogram power spectra. METHODS: Ten healthy young males participated in this study. The participant sat on a chair with his eyes facing an integrating sphere. After 10 min of light adaptation, the participant's left eye was exposed to white pulsed light (1000 lx; pulse width 2.5 ms) every 10 s with a blue-blocking glasses, a green-blocking glasses, or control glasses (no lens), and pupillary constriction was measured. Then, after rest for 10 min, the participant was exposed a continuous white light of 1000 lx with a blue- or green-blocking glasses or control glasses and electroencephalogram was measured. RESULTS: Pupillary constriction with the blue-blocking glasses was significantly less than that observed with the green-blocking glasses. Furthermore, pupillary constriction under the green-blocking glasses was significantly greater than that observed with the control glasses. CONCLUSIONS: A reduction in the green component of light facilitated pupillary constriction. Thus, the effects of polychromatic white light containing blue and green components on ipRGCs are apparently increased by removing the green component.  
  Address Graduate School of Engineering, Chiba University, Chiba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1880-6791 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30563575; PMCID:PMC6299521 Approved no  
  Call Number GFZ @ kyba @ Serial 2153  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: