toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Grunst, M.L.; Raap, T.; Grunst, A.S.; Pinxten, R.; Eens, M. url  doi
  Title Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 662 Issue Pages 266-275  
  Keywords Animals; birds; Great tit; Parus major; telomere shortening; Stress  
  Abstract Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2161  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: