toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Prayag, A.S.; Najjar, R.P.; Gronfier, C. url  doi
  Title Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans Type Journal Article
  Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 66 Issue 4 Pages e12562  
  Keywords Human Health; melatonin suppression; melanopic illuminance  
  Abstract INTRODUCTION: Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity, however photoreceptoral involvement remains unclear. METHODS AND RESULTS: In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that 1) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, 2) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 muW/cm(2)), 3) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 muW/cm(2)). We then tested this melanopsin-weighted illuminance response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION: Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin, and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices. This article is protected by copyright. All rights reserved.  
  Address Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69000, Lyon, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30697806 Approved no  
  Call Number GFZ @ kyba @ Serial 2186  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: