toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Nagare, R.; Rea, M.S.; Plitnick, B.; Figueiro, M.G. url  doi
  Title Effect of White Light Devoid of “Cyan” Spectrum Radiation on Nighttime Melatonin Suppression Over a 1-h Exposure Duration Type Journal Article
  Year 2019 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 34 Issue 2 Pages 195-204  
  Keywords Human Health; melatonin; melatonin suppression; cyan light  
  Abstract The intrinsically photosensitive retinal ganglion cells are the main conduit of the light signal emanating from the retina to the biological clock located in the suprachiasmatic nuclei of the hypothalamus. Lighting manufacturers are developing white light sources that are devoid of wavelengths around 480 nm (“cyan gap”) to reduce their impact on the circadian system. The present study was designed to investigate whether exposure to a “cyan-gap,” 3000 K white light source, spectrally tuned to reduce radiant power between 475 and 495 nm (reducing stimulation of the melanopsin-containing photoreceptor), would suppress melatonin less than a conventional 3000 K light source. The study's 2 phases employed a within-subjects experimental design involving the same 16 adult participants. In Phase 1, participants were exposed for 1 h to 3 experimental conditions over the course of 3 consecutive weeks: 1) dim light control (<5 lux at the eyes); 2) 800 lux at the eyes of a 3000 K light source; and 3) 800 lux at the eyes of a 3000 K, “cyan-gap” modified (3000 K mod) light source. The same protocol was repeated in Phase 2, but light levels were reduced to 400 lux at the eyes. As hypothesized, there were significant main effects of light level ( F1,12 = 9.1, p < 0.05, etap(2) = 0.43) and exposure duration ( F1,12 = 47.7, p < 0.05, etap(2) = 0.80) but there was no significant main effect of spectrum ( F1,12 = 0.16, p > 0.05, etap(2) = 0.01). There were no significant interactions with spectrum. Contrary to our model predictions, our results showed that short-term exposures (</= 1 h) to “cyan-gap” light sources suppressed melatonin similarly to conventional light sources of the same CCT and photopic illuminance at the eyes.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30821188 Approved no  
  Call Number GFZ @ kyba @ Serial 2240  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: