toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Small, C.; Elvidge, C.D. url  doi
openurl 
  Title Mapping Decadal Change in Anthropogenic Night Light Type Journal Article
  Year 2011 Publication Procedia Environmental Sciences Abbreviated Journal Procedia Environmental Sciences  
  Volume 7 Issue Pages 353-358  
  Keywords night light; urban; development; EOF analysis; PCA; Zipf; spatial network; fractal; percolation; DMSP-OLS; remote sensing; satellite; light at night  
  Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) sensors have imaged emitted light from Earth's surface since the 1970's. Temporal overlap in the missions of 5 OLS sensors allows for intercalibration of the annual composites over the past 19 years [1]. The resulting image time series captures a spatiotemporal signature of human settlement growth and evolution. We use temporal Empirical Orthogonal Function (EOF) analysis to characterize and quantify patterns of temporal change in stable night light brightness and spatial extent since 1992. Temporal EOF analysis provides a statistical basis for representing spatially abundant temporal patterns in the image time series as uncorrelated vectors of brightness as a function of time from 1992 to 2009. The variance partition of the eigenvalue spectrum combined with temporal structure of the EOFs provides a basis for distinguishing between deterministic temporal trends and stochastic year to year variance. The low order EOFs and Principal Components (PC) space together discriminate both earlier (1990s) and later (2000s) increases and decreases in brightness. Inverse transformation of these low order dimensions reduces stochastic variance sufficiently so that tri-temporal composites depict deterministic decadal trends. The most pronounced changes occur in Asia. Throughout Asia a variety of different patterns of brightness increase are visible in tri-temporal brightness composites – as well as some conspicuous areas of apparently decreasing background luminance and, in many places, intermittent light suggesting development of infrastructure rather than persistently lighted development. Vicarious validation using higher resolution imagery reveals multiple phases of urban growth in several cities, numerous instances of highway construction, extensive terracing networks and hydroelectric dam construction [3]. Lights also allow us to quantify the size distribution and connectedness of different intensities of development. Over a wide range of brightnesses, size distributions of spatially contiguous lighted area are well-fit by power laws with exponents near -1 as predicted by Zipf's Law. However, the larger lighted segments are much larger than individual cities; they correspond to vast spatial networks of contiguous development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-0296 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 227  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: