toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jeong, S.W.; Park, S.; Jin, J.S.; Seo, O.N.; Kim, G.-S.; Kim, Y.-H.; Bae, H.; Lee, G.; Kim, S.T.; Lee, W.S.; Shin, S.C. url  doi
openurl 
  Title Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium) Type Journal Article
  Year 2012 Publication Journal of Agricultural and Food Chemistry Abbreviated Journal J Agric Food Chem  
  Volume 60 Issue 39 Pages 9793-9800  
  Keywords Chrysanthemum/*chemistry/growth & development/metabolism/radiation effects; Flowers/chemistry/*growth & development/metabolism; Light; Plant Leaves/*chemistry/growth & development/metabolism/*radiation effects; Polyphenols/*analysis/metabolism; LED; light emitting diode; lighting  
  Abstract Light-emitting diodes (LEDs) are an efficient alternative to traditional lamps for plant growth. To investigate the influence of LEDs on flowering and polyphenol biosynthesis in the leaves of chrysanthemum, the plants were grown under supplemental blue, green, red, and white LEDs. Flower budding was formed even after a longer photoperiod than a critical day length of 13.5 h per day under blue light illumination. The weights of leaves and stems were highest under the white light illumination growth condition, whereas the weight of roots appeared to be independent of light quality. Among nine polyphenols characterized by high-performance liquid chromatography-tandem mass spectroscopy, three polyphenols were identified for the first time in chrysanthemum. A quantitation and principal component analysis biplot demonstrated that luteolin-7-O-glucoside (2), luteolin-7-O-glucuronide (3), and quercetagetin-trimethyl ether (8) were the highest polyphenols yielded under green light, and dicaffeoylquinic acid isomer (4), dicaffeoylquinic acid isomer (5), naringenin (7), and apigenin-7-O-glucuronide (6) were greatest under red light. Chlorogenic acid (1) and 1,2,6-trihydroxy-7,8-dimethoxy-3-methylanthraquinone (9) were produced in similar concentrations under both light types. The white and blue light appeared inefficient for polyphenol production. Taken together, our results suggest that the chrysanthemum flowering and polyphenol production are influenced by light quality composition.  
  Address Department of Chemistry and Research Institute of Life Science, Gyeongsang National University , Jinju, 660-701, Republic of Korea  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8561 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22970652 Approved no  
  Call Number IDA @ john @ Serial 26  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: