toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jechow, A.; Hölker, F. url  doi
openurl 
  Title How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements Type Journal Article
  Year 2019 Publication Wiley Interdisciplinary Reviews: Water Abbreviated Journal WIREs Water  
  Volume in press Issue Pages  
  Keywords Review; Ecology; Skyglow  
  Abstract Freshwater ecosystems are hotspots of biodiversity. They are of major importance for humans because they provide vital ecosystem services. However, as humans tend to settle near freshwaters and coastal areas, these ecosystems are also over‐proportionally affected by anthropogenic stressors. Artificial light at night can occur as a form of environmental pollution, light pollution. Light pollution affects large areas on a worldwide scale, is growing exponentially in radiance and extent and can have diverse negative effects on flora, fauna and on human health. While the majority of ecological studies on artificial light at night covered terrestrial systems, the studies on aquatic light pollution have unraveled impact on aquatic organisms, ecosystem functions as well as land‐water‐interactions. Although monitoring of light pollution is routinely performed from space and supported by ground‐based measurements, the extent and the amount of artificial light at night affecting water bodies is still largely unknown. This information, however, is essential for the design of future laboratory and field experiments, to guide light planners and to give recommendations for light pollution regulations. We analyze this knowledge gap by reviewing night‐time light measurement techniques and discuss their current obstacles in the context of water bodies. We also provide an overview of light pollution studies in the aquatic context. Finally, we give recommendations on how comprehensive night‐time light measurements in aquatic systems, specifically in freshwater systems, should be designed in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2049-1948 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: