toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. url  doi
openurl 
  Title Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data Type Journal Article
  Year 2020 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 85 Issue Pages 101989  
  Keywords Remote Sensing  
  Abstract Nighttime light (NTL) remote sensing data have been widely used to derive socioeconomic indices at national and regional scales. However, few studies analyzed the factors that may explain NTL variations at a fine scale due to the limited resolution of existing NTL data. As a new generation NTL satellite, Luojia 1-01 provides NTL data with a finer spatial resolution of ∼130 m and can be used to assess the relationship between NTL intensity and artificial surface features on an unprecedented scale. This study represents the first efforts to assess the relationship between Luojia 1-01 NTL intensity and artificial surface features at the parcel level in comparison to the Suomi National Polar-orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data. Points-of-interest (POIs) and land-use/land-cover (LULC) data were used in random forest (RF) regression models for both Luojia 1-01 and NPP-VIIRS to analyze the feature contribution of artificial surface features to NTL intensity. The results show that luminosity variations in Luojia 1-01 data for different land-use types were more significant than those in NPP-VIIRS data because of the finer spatial resolution and wider measurement range. Seventeen variables extracted from POI and LULC data explained the Luojia 1-01 and NPP-VIIRS NTL intensity, with a good out-of-bag score of 0.62 and 0.76, respectively. Moreover, Luojia 1-01 data had fewer “blooming” phenomena than NPP-VIIRS data, especially for cropland, water body, and rural area. Luojia 1-01 is more suitable for estimating socioeconomic activities and can attain more comprehensive information on human activities, since the feature contribution of POI variables is more sensitive to NTL intensity in the Luojia 1-01 RF regression model than that in the NPP-VIIRS RF regression model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: