toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Sun, Y.; Wang, S.; Wang, Y. url  doi
openurl 
  Title Estimating local-scale urban heat island intensity using nighttime light satellite imageries Type Journal Article
  Year 2020 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society  
  Volume 57 Issue Pages in press  
  Keywords Remote Sensing  
  Abstract Urban heat island (UHI) effect tends to harm health, increase anthropogenic energy consumption, and water consumption. Some policies targeting UHI mitigation have been implemented for a few years and thus needs to be evaluated for changes or modifications in the future. A low-cost approach to rapidly monitoring UHI intensity variations can assist in evaluating policy implementations. In this study, we proposed a new approach to local-scale UHI intensity estimates by using nighttime light satellite imageries. We explored to what extent UHI intensity could be estimated according to nighttime light intensity at two local scales. We attempted to estimate district-level and neighbourhood-level UHI intensity across London and Paris. As the geography level rises from district to neighbourhood, the capacity of the models explaining the variations of the UHI intensity decreases. Although the possible presence of residual spatial autocorrelation in the conventional regression models applied to geospatial data, most of the studies are likely to neglect this issue when fitting data to models. To remove negative effects of the residual spatial autocorrelation, this study used spatial regression models instead of non-spatial regression models (e.g., OLS models) to estimate UHI intensity. As a result, district-level UHI intensity was successfully estimated according to nighttime light intensity (approximately R2 = 0.7, MAE =1.16 °C, and RMSE =1.74 °C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: