toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) West, K.E.; Jablonski, M.R.; Warfield, B.; Cecil, K.S.; James, M.; Ayers, M.A.; Maida, J.; Bowen, C.; Sliney, D.H.; Rollag, M.D.; Hanifin, J.P.; Brainard, G.C. url  doi
openurl 
  Title Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans Type Journal Article
  Year 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)  
  Volume 110 Issue 3 Pages 619-626  
  Keywords Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Humans; Lighting/*methods; Melatonin/*blood; Metabolic Clearance Rate/radiation effects; Photic Stimulation/*methods; Radiation Dosage; Retina/*physiology/*radiation effects; Semiconductors; Young Adult; blue light  
  Abstract Light suppresses melatonin in humans, with the strongest response occurring in the short-wavelength portion of the spectrum between 446 and 477 nm that appears blue. Blue monochromatic light has also been shown to be more effective than longer-wavelength light for enhancing alertness. Disturbed circadian rhythms and sleep loss have been described as risk factors for astronauts and NASA ground control workers, as well as civilians. Such disturbances can result in impaired alertness and diminished performance. Prior to exposing subjects to short-wavelength light from light-emitting diodes (LEDs) (peak lambda = 469 nm; 1/2 peak bandwidth = 26 nm), the ocular safety exposure to the blue LED light was confirmed by an independent hazard analysis using the American Conference of Governmental Industrial Hygienists exposure limits. Subsequently, a fluence-response curve was developed for plasma melatonin suppression in healthy subjects (n = 8; mean age of 23.9 +/- 0.5 years) exposed to a range of irradiances of blue LED light. Subjects with freely reactive pupils were exposed to light between 2:00 and 3:30 AM. Blood samples were collected before and after light exposures and quantified for melatonin. The results demonstrate that increasing irradiances of narrowband blue-appearing light can elicit increasing plasma melatonin suppression in healthy subjects (P < 0.0001). The data were fit to a sigmoidal fluence-response curve (R(2) = 0.99; ED(50) = 14.19 muW/cm(2)). A comparison of mean melatonin suppression with 40 muW/cm(2) from 4,000 K broadband white fluorescent light, currently used in most general lighting fixtures, suggests that narrow bandwidth blue LED light may be stronger than 4,000 K white fluorescent light for suppressing melatonin.  
  Address Dept. of Neurology, Thomas Jefferson Univ., Philadelphia, Pennsylvania 19107, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-7567 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21164152 Approved no  
  Call Number IDA @ john @ Serial 287  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: