toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Zheng, Q.; Weng, Q.; Wang, K. url  doi
openurl 
  Title Correcting the Pixel Blooming Effect (PiBE) of DMSP-OLS nighttime light imagery Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 240 Issue Pages 111707  
  Keywords *instrumentation; Remote Sensing  
  Abstract In the last two decades, the advance in nighttime light (NTL) remote sensing has fueled a surge in extensive research towards mapping human footprints. Nevertheless, the full potential of NTL data is largely constrained by the blooming effect. In this study, we propose a new concept, the Pixel Blooming Effect (PiBE), to delineate the mutual influence of lights from a pixel and its neighbors, and an integrated framework to eliminate the PiBE in radiance calibrated DMSP-OLS datasets (DMSPgrc). First, lights from isolated gas flaring sources and a Gaussian model were used to model how the PiBE functions on each pixel through point spread function (PSF). Second, a two-stage deblurring approach (TSDA) was developed to deconvolve DMSPgrc images with Tikhonov regularization to correct the PiBE and reconstruct PiBE-free images. Third, the proposed framework was assessed by synthetic data and VIIRS imagery and by testing the resulting image with two applications. We found that high impervious surface fraction pixels (ISF > 0.6) were impacted by the highest absolute magnitude of PiBE, whereas NTL pattern of low ISF pixels (ISF < 0.2) was more sensitive to the PiBE. By using TSDA the PiBE in DMSPgrc images was effectively corrected which enhanced data variation and suppressed pseudo lights from non-built-up pixels in urban areas. The reconstructed image had the highest similarity to reference data from synthetic image (SSIM = 0.759) and VIIRS image (r = 0.79). TSDA showed an acceptable performance for linear objects (width > 1.5 km) and circular objects (radius > 0.5 km), and for NTL data with different noise levels (<0.6σ). In summary, the proposed framework offers a new opportunity to improve the quality of DMSP-OLS images and subsequently will be conducive to NTL-based applications, such as mapping urban extent, estimating socioeconomic variables, and exploring eco-impact of artificial lights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2940  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: