toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Thorne, H.C.; Jones, K.H.; Peters, S.P.; Archer, S.N.; Dijk, D.-J. url  doi
  Title Daily and seasonal variation in the spectral composition of light exposure in humans Type Journal Article
  Year 2009 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 26 Issue 5 Pages 854-866  
  Keywords Adolescent; Adult; Circadian Rhythm; Climate; Female; Genetic Variation; Humans; *Light; Male; Photochemistry/methods; Research Design; Rod Opsins/chemistry/genetics; *Seasons; Sleep  
  Abstract Light is considered the most potent synchronizer of the human circadian system and exerts many other non-image-forming effects, including those that affect brain function. These effects are mediated in part by intrinsically photosensitive retinal ganglion cells that express the photopigment melanopsin. The spectral sensitivity of melanopsin is greatest for blue light at approximately 480 nm. At present, there is little information on how the spectral composition of light to which people are exposed varies over the 24 h period and across seasons. Twenty-two subjects, aged 22+/-4 yrs (mean+/-SD) participated during the winter months (November-February), and 12 subjects aged 25+/-3 yrs participated during the summer months (April-August). Subjects wore Actiwatch-RGB monitors, as well as Actiwatch-L monitors, for seven consecutive days while living in England. These monitors measured activity and light exposure in the red, green, and blue spectral regions, in addition to broad-spectrum white light, with a 2 min resolution. Light exposure during the day was analyzed for the interval between 09:00 and 21:00 h. The time course of white-light exposure differed significantly between seasons (p = 0.0022), with light exposure increasing in the morning hours and declining in the afternoon hours, and with a more prominent decline in the winter. Overall light exposure was significantly higher in summer than winter (p = 0.0002). Seasonal differences in the relative contribution of blue-light exposure to overall light exposure were also observed (p = 0.0006), in particular during the evening hours. During the summer evenings (17:00-21:00 h), the relative contribution of blue light was significantly higher (p < 0.0001) (40.2+/-1.1%) than during winter evenings (26.6+/-0.9%). The present data show that in addition to overall light exposure, the spectral composition of light exposure varies over the day and with season.  
  Address Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19637047 Approved no  
  Call Number IDA @ john @ Serial 298  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: