toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Levy, O.; Fernandes de Barros Marangoni, L.; Cohen, J.I.; Rottier, C.; Béraud, E.; Grover, R.; Ferrier-Pagès, C. url  doi
  Title Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals Type Journal Article
  Year 2020 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 266 Issue Pages 114987  
  Keywords Animals; Ecology  
  Abstract Artificial Light at Night (ALAN), which is the alteration of natural light levels as the result of anthropogenic light sources, has been acknowledged as an important factor that alters the functioning of marine ecosystems. Using LEDs light to mimic ALAN, we studied the effect on the physiology (symbiont and chlorophyll contents, photosynthesis, respiration, pigment profile, skeletal growth, and oxidative stress responses) of two scleractinian coral species originating from the Red Sea. ALAN induced the photoinhibition of symbiont photosynthesis, as well as an overproduction of reactive oxygen species (ROS) and an increase in oxidative damage to lipids in both coral species. The extent of the deleterious effects of ALAN on the symbiotic association and coral physiology was aligned with the severity of the oxidative stress condition experienced by the corals. The coral species Sylophora pistillata, which experienced a more severe oxidative stress condition than the other species tested, Turbinaria reniformis, also showed a more pronounced bleaching (loss of symbionts and chlorophyll content), enhanced photoinhibition and decreased photosynthetic rates. Findings of the present study further our knowledge on the biochemical mechanisms underpinning the deleterious impacts of ALAN on scleractinian corals, ultimately shedding light on the emerging threat of ALAN on coral reef ecology. Further, considering that global warming and light pollution will increase in the next few decades, future studies should be taken to elucidate the potential synergetic effects of ALAN and global climate change stressors.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2982  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: