toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Martinez-Nicolas, A.; Ortiz-Tudela, E.; Madrid, J.A.; Rol, M.A. url  doi
  Title Crosstalk between environmental light and internal time in humans Type Journal Article
  Year 2011 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 28 Issue 7 Pages 617-629  
  Keywords Adolescent; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cues; *Environment; Female; Humans; *Light; Male; Sleep; Spain; Temperature; *Time; Young Adult  
  Abstract Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38 degrees 01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.  
  Address Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21793693 Approved no  
  Call Number IDA @ john @ Serial 302  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: