toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Wyse, C.A.; Selman, C.; Page, M.M.; Coogan, A.N.; Hazlerigg, D.G. url  doi
  Title Circadian desynchrony and metabolic dysfunction; did light pollution make us fat? Type Journal Article
  Year 2011 Publication Medical Hypotheses Abbreviated Journal Med Hypotheses  
  Volume 77 Issue 6 Pages 1139-1144  
  Keywords Human Health; Animals; Chronobiology Disorders/*complications/etiology; History, 20th Century; History, 21st Century; Humans; Lighting/*adverse effects/history/statistics & numerical data; Metabolic Diseases/*complications/etiology; Mice; *Models, Biological; Obesity/*epidemiology/*etiology; *Photoperiod; Rats  
  Abstract Circadian rhythms are daily oscillations in physiology and behaviour that recur with a period of 24h, and that are entrained by the daily photoperiod. The cycle of sunrise and sunset provided a reliable time cue for many thousands of years, until the advent of artificial lighting disrupted the entrainment of human circadian rhythms to the solar photoperiod. Circadian desynchrony (CD) occurs when endogenous rhythms become misaligned with daily photoperiodic cycles, and this condition is facilitated by artificial lighting. This review examines the hypothesis that chronic CD that has accompanied the availability of electric lighting in the developed world induces a metabolic and behavioural phenotype that is predisposed to the development of obesity. The evidence to support this hypothesis is based on epidemiological data showing coincidence between the appearance of obesity and the availability of artificial light, both geographically, and historically. This association links CD to obesity in humans, and is corroborated by experimental studies that demonstrate that CD can induce obesity and metabolic dysfunction in humans and in rodents. This association between CD and obesity has far reaching implications for human health, lifestyle and work practices. Attention to the rhythmicity of daily sleep, exercise, work and feeding schedules could be beneficial in targeting or reversing the modern human predisposition to obesity.  
  Address Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3TZ, UK.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-9877 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21983352 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 837  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: