toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Raiewski, E.E.; Elliott, J.A.; Evans, J.A.; Glickman, G.L.; Gorman, M.R. url  doi
openurl 
  Title Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 9 Pages 1206-1215  
  Keywords Animals; Circadian Rhythm/*physiology; Cricetinae; Male; Melatonin/blood/*secretion; Mesocricetus/blood/*physiology; Motor Activity/physiology; Phodopus/blood/*physiology; Photoperiod; Species Specificity  
  Abstract The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within approximately 2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4 h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.  
  Address Department of Psychology, and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0109, USA. eraiewski@ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23003567 Approved no  
  Call Number IDA @ john @ Serial 85  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: