toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Summa, K.C.; Vitaterna, M.H.; Turek, F.W. url  doi
openurl 
  Title Environmental perturbation of the circadian clock disrupts pregnancy in the mouse Type Journal Article
  Year 2012 Publication PloS one Abbreviated Journal PLoS One  
  Volume 7 Issue 5 Pages e37668  
  Keywords Animals; Circadian Rhythm/*physiology; *Environment; Female; Locomotion/physiology; Mice; Mice, Inbred C57BL; Photoperiod; Pregnancy; Pregnancy Outcome; Reproduction/*physiology  
  Abstract BACKGROUND: The circadian clock has been linked to reproduction at many levels in mammals. Epidemiological studies of female shift workers have reported increased rates of reproductive abnormalities and adverse pregnancy outcomes, although whether the cause is circadian disruption or another factor associated with shift work is unknown. Here we test whether environmental disruption of circadian rhythms, using repeated shifts of the light:dark (LD) cycle, adversely affects reproductive success in mice. METHODOLOGY/PRINCIPAL FINDINGS: Young adult female C57BL/6J (B6) mice were paired with B6 males until copulation was verified by visual identification of vaginal plug formation. Females were then randomly assigned to one of three groups: control, phase-delay or phase-advance. Controls remained on a constant 12-hr light:12-hr dark cycle, whereas phase-delayed and phase-advanced mice were subjected to 6-hr delays or advances in the LD cycle every 5-6 days, respectively. The number of copulations resulting in term pregnancies was determined. Control females had a full-term pregnancy success rate of 90% (11/12), which fell to 50% (9/18; p<0.1) in the phase-delay group and 22% (4/18; p<0.01) in the phase-advance group. CONCLUSIONS/SIGNIFICANCE: Repeated shifting of the LD cycle, which disrupts endogenous circadian timekeeping, dramatically reduces pregnancy success in mice. Advances of the LD cycle have a greater negative impact on pregnancy outcomes and, in non-pregnant female mice, require longer for circadian re-entrainment, suggesting that the magnitude or duration of circadian misalignment may be related to the severity of the adverse impact on pregnancy. These results explicitly link disruptions of circadian entrainment to adverse pregnancy outcomes in mammals, which may have important implications for the reproductive health of female shift workers, women with circadian rhythm sleep disorders and/or women with disturbed circadian rhythms for other reasons.  
  Address Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22649550; PMCID:PMC3359308 Approved no  
  Call Number IDA @ john @ Serial 92  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: