|   | 
Details
   web
Records
Author C-Sanchez, E.; Sanchez-Medina, A.J.; Alonso-Hernandez, J.B.; Voltes-Dorta, A.
Title Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach Type Journal Article
Year 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 19 Issue 13 Pages 2840
Keywords Society; Astrotourism; Skyglow; night sky brightness; artificial neural networks
Abstract Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting.
Address Management Science and Business Economics Group, University of Edinburgh Business School, Edinburgh EH8 9JS, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:31247919 Approved no
Call Number GFZ @ kyba @ Serial 2571
Permanent link to this record
 

 
Author Sun, B.; Zhang, Y.; Zhou, Q.; Gao, D.
Title Street-Scale Analysis of Population Exposure to Light Pollution Based on Remote Sensing and Mobile Big Data-Shenzhen City as a Case Type Journal Article
Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 20 Issue 9 Pages
Keywords Remote Sensing; Luojia 1-01; NTL remote sensing; light pollution; population exposure to light pollution; residential area
Abstract Most studies on light pollution are based on light intensity retrieved from nighttime light (NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse spatial resolution of traditional NTL remote sensing data limits the refined applications in current smart city studies. In order to analyze the influence of light pollution on populated areas, this study proposes an index named population exposure to light pollution (PELP) and conducts a street-scale analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen city as a case, multi-source data were combined including high resolution NTL remote sensing data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human activities and population distribution as well as point of interest (POI) data. Results show that the main influenced areas of light pollution are concentrated in the downtown and core areas of newly expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g., ports). In comparison, commercial-residential mixed areas and village-in-city show a high level of PELP. The proposed method better presents the extent of population exposure to light pollution at a fine-grid scale and the regional difference between different types of residential areas in a city.
Address TalkingData Co., Ltd., Beijing 100027, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:32403250 Approved no
Call Number GFZ @ kyba @ Serial 2921
Permanent link to this record
 

 
Author de Meester, J.; Storch, T.
Title Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas Type Journal Article
Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 20 Issue 11 Pages
Keywords Instrumentation; Remote Sensing; high spatial resolution; lighting parameter; lighting type classification; multispectral band optimization; nighttime remote sensing; satellite image simulation; urban area
Abstract Contrary to its daytime counterpart, nighttime visible and near infrared (VIS/NIR) satellite imagery is limited in both spectral and spatial resolution. Nevertheless, the relevance of such systems is unquestioned with applications to, e.g., examine urban areas, derive light pollution, and estimate energy consumption. To determine optimal spectral bands together with required radiometric and spatial resolution, at-sensor radiances are simulated based on combinations of lamp spectra with typical luminances according to lighting standards, surface reflectances, and radiative transfers for the consideration of atmospheric effects. Various band combinations are evaluated for their ability to differentiate between lighting types and to estimate the important lighting parameters: efficacy to produce visible light, percentage of emissions attributable to the blue part of the spectrum, and assessment of the perceived color of radiation sources. The selected bands are located in the green, blue, yellow-orange, near infrared, and red parts of the spectrum and include one panchromatic band. However, these nighttime bands tailored to artificial light emissions differ significantly from the typical daytime bands focusing on surface reflectances. Compared to existing or proposed nighttime or daytime satellites, the recommended characteristics improve, e.g., classification of lighting types by >10%. The simulations illustrate the feasible improvements in nocturnal VIS/NIR remote sensing which will lead to advanced applications.
Address German Aerospace Center (DLR), Earth Observation Center (EOC), Munchener Str. 20, 82234 Wessling, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:32532117 Approved no
Call Number GFZ @ kyba @ Serial 3006
Permanent link to this record
 

 
Author den Outer, P.; Lolkema, D.; Haaima, M.; van der Hoff, R.; Spoelstra, H.; Schmidt, W.
Title Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network Type Journal Article
Year 2015 Publication Sensors Abbreviated Journal (down) Sensors
Volume 15 Issue 4 Pages 9466-9480
Keywords Instrumentation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1157
Permanent link to this record
 

 
Author Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G.
Title Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal (down) Sensors
Volume 18 Issue 9 Pages 2900
Keywords Remote Sensing; Instrumentation
Abstract The successful launch of Luojia 1-01 complements the existing nighttime light data with a high spatial resolution of 130 m. This paper is the first study to assess the potential of using Luojia 1-01 nighttime light imagery for investigating artificial light pollution. Eight Luojia 1-01 images were selected to conduct geometric correction. Then, the ability of Luojia 1-01 to detect artificial light pollution was assessed from three aspects, including the comparison between Luojia 1-01 and the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), the source of artificial light pollution and the patterns of urban light pollution. Moreover, the advantages and limitations of Luojia 1-01 were discussed. The results showed the following: (1) Luojia 1-01 can detect a higher dynamic range and capture the finer spatial details of artificial nighttime light. (2) The averages of the artificial light brightness were different between various land use types. The brightness of the artificial light pollution of airports, streets, and commercial services is high, while dark areas include farmland and rivers. (3) The light pollution patterns of four cities decreased away from the urban core and the total light pollution is highly related to the economic development. Our findings confirm that Luojia 1-01 can be effectively used to investigate artificial light pollution. Some limitations of Luojia 1-01, including its spectral range, radiometric calibration and the effects of clouds and moonlight, should be researched in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1997
Permanent link to this record