|   | 
Details
   web
Records
Author Garratt, M.J.; Jenkins, S.R.; Davies, T.W.
Title Mapping the consequences of artificial light at night for intertidal ecosystems Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal (down) Science of The Total Environment
Volume 691 Issue Pages 760-768
Keywords Ecology; Lighting
Abstract Widespread coastal urbanization has resulted in artificial light pollution encroaching into intertidal habitats, which are highly valued by society for ecosystem services including coastal protection, climate regulation and recreation. While the impacts of artificial light at night in terrestrial and riparian ecosystems are increasingly well documented, those on organisms that reside in coastal intertidal habitats are less well explored. The distribution of artificial light at night from seaside promenade lighting was mapped across a sandy shore, and its consequences for macroinvertebrate community structure quantified accounting for other collinear environmental variables known to shape biodiversity in intertidal ecosystems (shore height, wave exposure and organic matter content). Macroinvertebrate community composition significantly changed along artificial light gradients. Greater numbers of species and total community biomass were observed with increasing illumination, a relationship that was more pronounced (increased effects size) with increasing organic matter availability. Individual taxa exhibited different relationships with artificial light illuminance; the abundances of 27% of non-rare taxa [including amphipods (Amphipoda), catworms (Nephtys spp.), and sand mason worms (Lanice conchilega)] decreased with increasing illumination, while 20% [including tellins (Tellinidae spp.), lugworms (Arenicola marina) and ragworms (Nereididae spp.)] increased. Possible causes of these relationships are discussed, including direct effects of artificial light on macroinvertebrate behaviour and indirect effects via trophic interactions. With increasing light pollution in coastal zones around the world, larger scale changes in intertidal ecosystems could be occurring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2590
Permanent link to this record
 

 
Author Vanbergen, A.J.; Potts, S.G.; Vian, A.; Malkemper, E.P.; Young, J.; Tscheulin, T.
Title Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal (down) Science of The Total Environment
Volume 695 Issue Pages 133833
Keywords Animals; Ecology; review; anthropogenic radiofrequency electromagnetic radiation; AREMR; bees; Apis mellifera; pollinators
Abstract Worldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies or emitted from power lines, represent an additional and growing threat to pollinators. A lack of high quality scientific studies means that knowledge of the risk to pollinators from anthropogenic EMR is either inconclusive, unresolved, or only partly established. A handful of studies provide evidence that ALAN can alter pollinator communities, pollination and fruit set. Laboratory experiments provide some, albeit variable, evidence that the honey bee Apis mellifera and other invertebrates can detect EMR, potentially using it for orientation or navigation, but they do not provide evidence that AREMR affects insect behaviour in ecosystems. Scientifically robust evidence of AREMR impacts on abundance or diversity of pollinators (or other invertebrates) are limited to a single study reporting positive and negative effects depending on the pollinator group and geographical location. Therefore, whether anthropogenic EMR (ALAN or AREMR) poses a significant threat to insect pollinators and the benefits they provide to ecosystems and humanity remains to be established.
Address Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; adam.vanbergen(at)inra.fr
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2613
Permanent link to this record
 

 
Author Zhang, F.-S.; Wang, Y.; Wu, K.; Xu, W.-Y.; Wu, J.; Liu, J.-Y.; Wang, X.-Y.; Shuai, L.-Y.
Title Effects of artificial light at night on foraging behavior and vigilance in a nocturnal rodent Type Journal Article
Year 2020 Publication Science of The Total Environment Abbreviated Journal (down) Science of The Total Environment
Volume In press Issue Pages 138271
Keywords Animals
Abstract Artificial light at night has greatly changed the physical environment for many organisms on a global scale. As an energy efficient light resource, light emitting diodes (LEDs) have been widely used in recent years. As LEDs often have a broad spectrum, many biological processes may be potentially affected. In this study, we conducted manipulated experiments in rat-proof enclosures to explore the effects of LED night lighting on behavior of a nocturnal rodent, the Mongolian five-toed jerboa (Allactaga sibirica). We adopted the giving-up density (GUD) method and camera video trapping to study behavioral responses in terms of patch use, searching efficiency and vigilance. With the presence of white LED lighting, jerboas spent less time in patches, foraged less intensively (with higher GUDs) and became vigilant more frequently, while their searching efficiency was higher than under dark treatment. Although both positive and negative effects of LEDs on foraging were detected, the net effect of LEDs on jerboas is negative, which may further translate into changes in population dynamics, inter-specific interaction and community structure. This is the first study to explore the effects of LED lighting on foraging behavior and search efficiency in rodents with the potential positive effects of using artificial light regimes as a pest management tool.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2877
Permanent link to this record
 

 
Author Gong, P.; Li, X.; Zhang, W.
Title 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing Type Journal Article
Year 2019 Publication Science Bulletin Abbreviated Journal (down) Science Bulletin
Volume 64 Issue 11 Pages 756-763
Keywords Remote Sensing; China; human settlement
Abstract Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However, annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine (GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985-2017 at an annual frequency. The 1978 data were at 60 m resolution, while the 1985-2017 data were in 30 m resolution. For the 30 m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and 2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.
Address Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; penggong(at)tsinghua.edu.cn
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-9273 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2321
Permanent link to this record
 

 
Author Moran, D.; Softley, R.; Warrant, E.J.
Title The energetic cost of vision and the evolution of eyeless Mexican cavefish Type Journal Article
Year 2015 Publication Science Advances Abbreviated Journal (down) Science Advances
Volume 1 Issue 8 Pages e1500363-e1500363
Keywords vision; animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1264
Permanent link to this record