|   | 
Details
   web
Records
Author Riegel, K.W.
Title Light Pollution: Outdoor lighting is a growing threat to astronomy Type Journal Article
Year 1973 Publication Science (New York, N.Y.) Abbreviated Journal (down) Science
Volume 179 Issue 4080 Pages 1285-1291
Keywords Skyglow
Abstract There have been major qualitative and quantitative changes in outdoor lighting technology in the last decade. The level of skylight caused by outdoor lighting systems is growing at a very high rate, about 20 percent per year nationwide. In addition, the spectral distribution of man-made light pollution may change in the next decade from one containing a few mercury lines to one containing dozens of lines and a significantly increased continuum level. Light pollution is presently damaging to some astronomical programs, and it is likely to become a major factor limiting progress in the next decade. Suitable sites in the United States for new dark sky observing facilities are very difficult to find. Some of the increase in outdoor illumination is due to the character of national growth and development. Some is due to promotional campaigns, in which questionable arguments involving public safety are presented. There are protective measures which might be adopted by the government; these would significantly aid observational astronomy, without compromising the legitimate outdoor lighting needs of society. Observatories should establish programs to routinely monitor sky brightness as a function of position, wavelength, and time. The astronomical community should establish a mechanism by which such programs can be supported and coordinated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:17835929 Approved no
Call Number LoNNe @ kagoburian @ Serial 566
Permanent link to this record
 

 
Author Berson, D.M.; Dunn, F.A.; Takao, M.
Title Phototransduction by retinal ganglion cells that set the circadian clock Type Journal Article
Year 2002 Publication Science (New York, N.Y.) Abbreviated Journal (down) Science
Volume 295 Issue 5557 Pages 1070-1073
Keywords Human Health; Animals; Axons/ultrastructure; *Biological Clocks; *Circadian Rhythm; Dendrites/ultrastructure; Isoquinolines; Kinetics; Light; *Light Signal Transduction; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Retinal Ganglion Cells/chemistry/cytology/*physiology; Rod Opsins/analysis/physiology; Suprachiasmatic Nucleus/cytology/*physiology
Abstract Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.
Address Department of Neuroscience, Brown University, Providence, RI, 02912 USA. David_Berson@brown.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:11834835 Approved no
Call Number LoNNe @ kagoburian @ Serial 720
Permanent link to this record
 

 
Author Czeisler, C.; Weitzman, E.; Moore-Ede, M.; Zimmerman, J.; Knauer, R.
Title Human sleep: its duration and organization depend on its circadian phase Type Journal Article
Year 1980 Publication Science Abbreviated Journal (down) Science
Volume 210 Issue 4475 Pages 1264-1267
Keywords Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 731
Permanent link to this record
 

 
Author Wurtman, R.J.; Axelrod, J.; Phillips, L.S.
Title Melatonin Synthesis in thePineal Gland: Control by Light Type Journal Article
Year 1963 Publication Science Abbreviated Journal (down) Science
Volume 142 Issue 3595 Pages 1071-1073
Keywords Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 836
Permanent link to this record
 

 
Author Fernandez, F.; Lu, D.; Ha, P.; Costacurta, P.; Chavez, R.; Heller, H.C.; Ruby, N.F.
Title Circadian rhythm. Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing Type Journal Article
Year 2014 Publication Science (New York, N.Y.) Abbreviated Journal (down) Science
Volume 346 Issue 6211 Pages 854-857
Keywords Animals; circadian rhythm; circadian disruption; memory; suprachiasmatic nucleus; Biological Clocks; dysrhythmia; Siberian hamster; Phodopus sungorus; sleep
Abstract Chronic circadian dysfunction impairs declarative memory in humans but has little effect in common rodent models of arrhythmia caused by clock gene knockouts or surgical ablation of the suprachiasmatic nucleus (SCN). An important problem overlooked in these translational models is that human dysrhythmia occurs while SCN circuitry is genetically and neurologically intact. Siberian hamsters (Phodopus sungorus) are particularly well suited for translational studies because they can be made arrhythmic by a one-time photic treatment that severely impairs spatial and recognition memory. We found that once animals are made arrhythmic, subsequent SCN ablation completely rescues memory processing. These data suggest that the inhibitory effects of a malfunctioning SCN on cognition require preservation of circuitry between the SCN and downstream targets that are lost when these connections are severed.
Address Biology Department, Stanford University, Stanford CA, USA. ruby@stanford.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:25395537 Approved no
Call Number IDA @ john @ Serial 1069
Permanent link to this record