toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M.; Aubé, M.; Kohút, I. url  doi
openurl 
  Title The effect of spatial and spectral heterogeneity of ground-based light sources on night-sky radiances: Light pollution for heterogeneous sources Type Journal Article
  Year 2010 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (up)  
  Volume 409 Issue 3 Pages 1203-1212  
  Keywords light pollution; scattering; atmospheric effects; methods: numerical  
  Abstract Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 259  
Permanent link to this record
 

 
Author Xavier Kerola, D. url  doi
openurl 
  Title Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code: Modelling artificial night-sky brightness Type Journal Article
  Year 2006 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (up)  
  Volume 365 Issue 4 Pages 1295-1299  
  Keywords Skyglow; modeling; radiative transfer; Gauss-Seidel; light pollution; Garstang model  
  Abstract As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 278  
Permanent link to this record
 

 
Author Semeniuk, Kent (ed) pdf  url
openurl 
  Title Gazing Up: An Exploration of Municipal Night Lighting Practices Amongst Six Canadian Municipalities Type Manuscript
  Year 2014 Publication Abbreviated Journal (up)  
  Volume Issue Pages  
  Keywords light pollution; public policy; Canada; outdoor lighting; municipal  
  Abstract Light pollution is broadly defined as the unnecessary illumination of the nocturnal environment. Light pollution is a pervasive phenomena shown to have harmful consequences for both the biotic and abiotic components of an ecosystem. While some municipalities have begun to address the environmental and economic costs of light pollution, most have not. The goal of this study was to investigate current municipal night lighting practices for six selected Canadian municipalities with the aim of determining their policies and practices for night lighting. Semi-structured interviews with key informants were conducted and analyzed using a mixed methods approach that included a thorough literature review. The results indicate that rising energy costs, aging infrastructure and the lighting industry are driving the majority of changes taking place in adapting municipalities while most municipalities remain content with status quo. The research conducted led to guideline improvements for municipal night lighting in today’s municipalities.  
  Address School of Environmental Design and Rural Development, University of Guelph  
  Corporate Author Thesis Master's thesis  
  Publisher University of Guelph Place of Publication Guelph, Ontario Editor Semeniuk, Kent  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 305  
Permanent link to this record
 

 
Author Bedrosian, T.A. (ed) pdf  url
openurl 
  Title Circadian Disruption by Light at Night: Implications for Mood Type Book Whole
  Year 2013 Publication Abbreviated Journal (up)  
  Volume Issue Pages  
  Keywords circadian disruption; sleep; light at night; melanopsin; mood; mental health; Mood Disorders; epigenetics; red light  
  Abstract Life on Earth has adapted to a consistent 24-h solar cycle. Circadian rhythms in physiology and behavior remain synchronized to the environment using light as the most potent entraining cue. During the past century, however, the widespread adoption of electric light has led to `round-the-clock’ societies. Instead of aligning with the environment, individuals follow artificial and often erratic light cycles created by social and work schedules. In particular, exposure to artificial light at night (LAN), termed “light pollution”, has become pervasive over the past 100 years. Virtually every individual living in the U.S. and Europe experiences this aberrant light exposure, and moreover about 20% of the population performs shift work. LAN may disrupt physiological timekeeping, leading to dysregulation of internal processes and misalignment between behavior and the environment. Recent evidence suggests that individuals exposed to excessive LAN, such as night shift workers, have increased risk for depressive disorders, but the biological mechanism remains unspecified. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) project light information to (1) the suprachiasmatic nucleus (SCN) in the hypothalamus, regulating circadian rhythms, and (2) to limbic regions, putatively regulating mood. Thus, LAN has the potential to affect both circadian timekeeping and mood. In this dissertation, I present evidence from rodent studies supporting the novel hypothesis that night-time exposure to light disrupts circadian organization and contributes to depressed mood. First, I consider the physiological and behavioral consequences associated with unnatural exposure to LAN. The effects of LAN on circadian output are considered in terms of locomotor activity, the diurnal cortisol rhythm, and diurnal clock protein expression in the brain in Chapter 2. The influence of LAN on behavior and brain plasticity is discussed, with particular focus on depressive-like behavior (Chapter 3) and effects of SSRI treatment (Chapter 4). Effects of LAN on structural plasticity and gene expression in the brain are described, with emphasis on potential correlates of the depressive-like behavior observed under LAN in Chapter 5. Given the prevalence of LAN exposure and its importance, strategies for reversing the effects are offered. Specifically, eliminating LAN quickly reverses behavioral and physiological effects of exposure as described in Chapter 5. In Chapter 6 I report that administration of a pharmacological cytokine inhibitor prevents depressive-like behaviors in LAN, implicating brain inflammation in the behavioral effect. Finally, I demonstrate in Chapter 7 that exposure to red wavelength LAN reduces the effects on brain and behavior, suggesting that LAN acts through specific retinal pathways involving melanopsin. Taken together, these studies demonstrate the consequences of LAN, but also outline potential avenues for prevention or intervention.  
  Address Department of Neuroscience and The Institute for Behavioral Medicine Research The Ohio State University  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Bedrosian, T.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 323  
Permanent link to this record
 

 
Author Fuller, G. (ed) pdf  openurl
  Title The Night Shift: Lighting and Nocturnal Strepsirrhine Care in Zoos Type Book Whole
  Year 2013 Publication Abbreviated Journal (up)  
  Volume Issue Pages  
  Keywords zoos; light at night; circadian disruption; strepsirrhines; primates; lorises; pottos; lighting design  
  Abstract Over billions of years of evolution, light from the sun, moon, and stars has provided

organisms with reliable information about the passage of time. Photic cues entrain

the circadian system, allowing animals to perform behaviors critical for survival and

reproduction at optimal times. Modern artificial lighting has drastically altered

environmental light cues. Evidence is accumulating that exposure to light at night

(particularly blue wavelengths) from computer screens, urban light pollution, or as

an occupational hazard of night-shift work has major implications for human health.

Nocturnal animals are the shift workers of zoos; they are generally housed on

reversed light cycles so that daytime visitors can observe their active behaviors. As a

result, they are exposed to artificial light throughout their subjective night. The goal

of this investigation was to examine critically the care of nocturnal strepsirrhine

primates in North American zoos, focusing on lorises (Loris and Nycticebus spp.) and pottos (Perodicticus potto). The general hypothesis was that exhibit lighting design affects activity patterns and circadian physiology in nocturnal strepsirrhines. The

first specific aim was to assess the status of these populations. A multi-institutional husbandry survey revealed little consensus among zoos in lighting design, with both red and blue light commonly used for nocturnal illumination. A review of medical records also revealed high rates of neonate mortality. The second aim was to

develop methods for measuring the effects of exhibit lighting on behavior and

health. The use of actigraphy for automated activity monitoring was explored.

Methods were also developed for measuring salivary melatonin and cortisol as

indicators of circadian disruption. Finally, a multi-institutional study was conducted

comparing behavioral and endocrine responses to red and blue dark phase lighting.

These results showed greater activity levels in strepsirrhines housed under red light than blue. Salivary melatonin concentrations in pottos suggested that blue light

suppressed nocturnal melatonin production at higher intensities, but evidence for

circadian disruption was equivocal. These results add to the growing body of

evidence on the detrimental effects of blue light at night and are a step towards

empirical recommendations for nocturnal lighting design in zoos.
 
  Address Department of Biology, Case Western Reserve University  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Fuller, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: