|   | 
Details
   web
Records
Author Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E.
Title Magnitude of urban heat islands largely explained by climate and population Type Journal Article
Year 2019 Publication Nature Abbreviated Journal Nature
Volume 573 Issue 7772 Pages 55-60
Keywords Remote Sensing
Abstract (down) Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (DeltaTs) worldwide and find a nonlinear increase in DeltaTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of DeltaTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.
Address Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:31485056 Approved no
Call Number GFZ @ kyba @ Serial 2669
Permanent link to this record
 

 
Author Meng, C.; Dou, Y.
Title Quantifying the Anthropogenic Footprint in Eastern China Type Journal Article
Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 6 Issue Pages 24337
Keywords Remote Sensing
Abstract (down) Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities.
Address Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:27067132 Approved no
Call Number LoNNe @ kyba @ Serial 1415
Permanent link to this record
 

 
Author Sun, Y.; Wang, S.; Wang, Y.
Title Estimating local-scale urban heat island intensity using nighttime light satellite imageries Type Journal Article
Year 2020 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society
Volume 57 Issue Pages in press
Keywords Remote Sensing
Abstract (down) Urban heat island (UHI) effect tends to harm health, increase anthropogenic energy consumption, and water consumption. Some policies targeting UHI mitigation have been implemented for a few years and thus needs to be evaluated for changes or modifications in the future. A low-cost approach to rapidly monitoring UHI intensity variations can assist in evaluating policy implementations. In this study, we proposed a new approach to local-scale UHI intensity estimates by using nighttime light satellite imageries. We explored to what extent UHI intensity could be estimated according to nighttime light intensity at two local scales. We attempted to estimate district-level and neighbourhood-level UHI intensity across London and Paris. As the geography level rises from district to neighbourhood, the capacity of the models explaining the variations of the UHI intensity decreases. Although the possible presence of residual spatial autocorrelation in the conventional regression models applied to geospatial data, most of the studies are likely to neglect this issue when fitting data to models. To remove negative effects of the residual spatial autocorrelation, this study used spatial regression models instead of non-spatial regression models (e.g., OLS models) to estimate UHI intensity. As a result, district-level UHI intensity was successfully estimated according to nighttime light intensity (approximately R2 = 0.7, MAE =1.16 °C, and RMSE =1.74 °C).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2210-6707 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2849
Permanent link to this record
 

 
Author Chang, C., Chang, K., & Fu, W.
Title Testing of Various Monochromatic LED Lights Used in Supplemental Irradiation of Lettuce in Modern urban Rooftop Polytunnels Type Journal Article
Year 2019 Publication Applied Engineering in Agriculture Abbreviated Journal
Volume Issue Pages
Keywords Plants
Abstract (down) Urban farming could provide both vegetable growers and urban dwellers in general with more direct access to various fresh vegetables. Nevertheless, certain challenging problems associated with urban farming, including a lack of cultivation space and the effects of urban heat islands, must still be solved. Relatedly, a grower must, in some cases, also know how to utilize various forms of technology, such as lighting systems, as well as factors such as water availability. In this study, an original rooftop polytunnel design for lettuce (Lactuca sativa cv. Lollo Rosso) cultivation equipped with a hydroponic system and light emitting diodes (LEDs) is proposed. Various monochromatic lights were also tested for their effects on different quality parameters of lettuce. Specifically, supplemental red (655 nm), blue (445 nm), green (520 nm), and ultraviolet (380 nm) LED lights were used at night to apply photon fluxes of 150, 150, 150, and 20 μmol.m-2.s-1, respectively. The resulting effects of these different colored LEDs on the pigment concentration and growth response of the lettuce grown inside the roof polytunnel were then investigated. The experiment was then repeated several times with different environmental parameters in order to compare the effects of the different light wavelengths under higher temperatures and higher natural irradiation conditions.The results indicated that supplemental red or blue light at night could be strategically employed to maintain low nitrate levels and enhance the nutritional value and growth of lettuce grown in roof polytunnels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2349
Permanent link to this record
 

 
Author Yao, Y.; Chen, D.; Chen, L.; Wang, H.; Guan, Q.
Title A time series of urban extent in China using DSMP/OLS nighttime light data Type Journal Article
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue 5 Pages e0198189
Keywords Remote Sensing
Abstract (down) Urban extent data play an important role in urban management and urban studies, such as monitoring the process of urbanization and changes in the spatial configuration of urban areas. Traditional methods of extracting urban-extent information are primarily based on manual investigations and classifications using remote sensing images, and these methods have such problems as large costs in labor and time and low precision. This study proposes an improved, simplified and flexible method for extracting urban extents over multiple scales and the construction of spatiotemporal models using DMSP/OLS nighttime light (NTL) for practical situations. This method eliminates the regional temporal and spatial inconsistency of thresholding NTL in large-scale and multi-temporal scenes. Using this method, we have extracted the urban extents and calculated the corresponding areas on the county, municipal and provincial scales in China from 2000 to 2012. In addition, validation with the data of reference data shows that the overall accuracy (OA), Kappa and F1 Scores were 0.996, 0.793, and 0.782, respectively. We increased the spatial resolution of the urban extent to 500 m (approximately four times finer than the results of previous studies). Based on the urban extent dataset proposed above, we analyzed changes in urban extents over time and observed that urban sprawl has grown in all of the counties of China. We also identified three patterns of urban sprawl: Early Urban Growth, Constant Urban Growth and Recent Urban Growth. In addition, these trends of urban sprawl are consistent with the western, eastern and central cities of China, respectively, in terms of their spatial distribution, socioeconomic characteristics and historical background. Additionally, the urban extents display the spatial configurations of urban areas intuitively. The proposed urban extent dataset is available for download and can provide reference data and support for future studies of urbanization and urban planning.
Address School of Information Engineering, China University of Geosciences, Wuhan, Hubei province, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:29795685 Approved no
Call Number GFZ @ kyba @ Serial 1924
Permanent link to this record